GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 424 (2003), S. 532-536 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate. Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Palaeoceanographic reconstructions from the North Atlantic indicate massive ice breakouts from East Greenland near the onset of cold Dansgaard–Oeschger (D–O) stadials. In contrast to these coolings in the North Atlantic area, a new sea-surface temperature record reveals concomitant warm spells in the northern North Pacific. A sensitivity experiment with an atmospheric general circulation model is used to test the potential impact of sea-surface warmings by 3.5 °C in the North Pacific, on top of otherwise cold stadial climate conditions, on the precipitation regime over the Northern Hemisphere ice sheets. The model predicts a maximum response over East Greenland and the Greenland Sea, where a 40% increase in net annual snow accumulation occurs. This remote effect of North Pacific warm spells on the East Greenland snow-accumulation rate may play an important role in generating D–O cycles by rebuilding the ice lost during ice breakouts. In addition, the increased precipitation over the Greenland Sea may help to sustain the D–O stadial climate state.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation – atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation — atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Proceedings of the II PAST Gateways - International converence and workshop, Trieste, Italy, 2014-05-19-2014-05-23
    Publication Date: 2014-06-23
    Description: The Greenland-Scotland Ridge (GSR) is a crucial hydrographic barrier for the exchange of water masses between the Polar Seas and the North Atlantic Ocean. Through the Miocene (5-23 Myrs; Myrs=million years ago), the Greenland-Scotland Ridge deepened at 18 Myrs and 15.5 Myrs, and again at 12.5 Myrs by changes of the Icelandic mantle plume activity, which has direct consequences for the evolution of Northern Component Water. In a sensitivity study, we investigate the effect of GSR depth variations with a global atmosphere-ocean-vegetation General Circulation Model. Oceanic characteristics of the quasi-enclosed Nordic Seas and Arctic Ocean are analyzed, as well as the critical depth threshold for the evolution of the North Atlantic Current and the East Greenland Current is examined and linked to changes in global ocean circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-07-08
    Description: During the past two decades, several atmospheric and oceanic general circulation models (GCMs) have been enhanced by the capability to explicitly simulate the hydrological cycle of the two stable water isotopes H218O and HDO. They have provided a wealth of understanding regarding changes of the water isotope signals in various archives under different past climate conditions. However, so far the number of fully coupled atmosphere-ocean GCMs with explicit water isotope diagnostics is very limited. Such coupled models are required for a more comprehensive simulation of both past climates as well as related isotope changes in the Earth’s hydrological cycle. Here, we report first results of a newly developed isotope diagnostics within the Earth system model ECHAM5-JSBACH/MPIMOM. Both H218O and HDO and their relevant fractionation processes are included in all compartments and branches of the water cycle within this model. First equilibrium simulations have been performed for both pre-industrial (PI) and Last Glacial Maximum (LGM) boundary conditions. Evaluation of the PI simulation reveals a good overall model performance in accordance with available modern isotope data from vapour measurements, precipitation samples as well as marine records. The LGM experiment results in spatially varying isotope depletion in precipitation between -20‰ and 0‰ in agreement with data from various isotope records. The simulated isotopic compoisiton of ccean surface waters shows a strong glacial enrichment in the Arctic. In further model analyses we investigate how the relation between water isotopes and key climate variables, e.g. land and surface temperatures, precipitation amounts, oceanic salinity, might has changed for different regions on a glacial-interglacial time scale. Moreover, the influence of glacial climates changes on second-order isotope signals, e.g. the Deuterium excess, is examined.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Nature Geoscience, Nature Publishing Group, 7(5), pp. 376-381, ISSN: 1752-0894
    Publication Date: 2014-07-14
    Description: During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere–ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    COPERNICUS
    In:  EPIC3EGU General Assembly 2013, Vienna, Austria, 2013-04-07-2013-04-12Geophysical Research Abstracts Vol. 15, EGU2013-12930, 2013, COPERNICUS
    Publication Date: 2019-12-03
    Description: Monthly time series of temperature, wind speed and sea level pressure recorded at Neumayer polar research station (70°39'S, 8°15'W) during the last 30 years are analysed in order to identify the climate oscillations and associated teleconnection patterns at time scales from half-year to decades. Oscillations with periods of six months (semi-annual) and one year (annual) were identified in all records. Both annual and semi-annual oscillations are non-stationary in time. The dominant pattern of interannual to decadal variability, which captures the out of phase variations of temperature and wind speed with sea level pressure, shows a persistent 2-3 years oscillation. This oscillation is related with a wave-train atmospheric circulation pattern similar to the Pacific South American (PSA) modes. This suggests a tropical origin of this oscillation. The second pattern of interannual to decadal variability, which captures in-phase variations of these variables, shows enhanced variability at 5-6 year time scales. This oscillation is induced by the Antarctic Oscillation (AAO) which shows enhanced variability at these time scales. Analysis of the variability of high resolution stable isotope time series from four ice cores from Neumayer region reveals similar oscillations. This suggests that ice core data from the region could be used to reconstruct the phase and amplitude of atmospheric circulation patterns associated to these oscillations during past periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2014-08-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/x-netcdf
    Format: application/x-netcdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...