GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-27
    Description: Deep-water formation in the Labrador Sea is simulated with the Finite-Element Sea-Ice Ocean Model (FESOM) in a regionally focused, but global covered model setup. The model has a regional resolution of up to 7km. Our simulations cover the time period 1958-2007. We evaluate the capability of the model setup to reproduce a realistic deep water formation in the Labrador Sea. Two classes of Labrador Sea Water (LSW) are analysed and compared to LSW layer thicknesses derived from observations in the formation region for the time interval 1988-2007. It is shown that the model is able to reproduce four phases in the temporal evolution of the potential density, temperature and salinity, since the late 1980s, which are known in observational data. These four phases are characterized by a significantly different LSW formation. The first phase is characterized in the model by a fast increase in the the convection depth of up to 2000m, accompanied by an increased Spring production of deep Labrador Sea Water (dLSW). In the second phase, the dLSW layer thickness remains on a high level for several years, while the third phase features a gradual decrease in the deep ventilation and the renewal of the deep ocean layers. The fourth phase features an almost constant dLSW layer thickness on a reduced level. By applying a Composite Map Analysis between an index of dLSW and sea level pressure over the entire simulation period from 1958-2007, it is shown that a pattern which resembles the structure of the North Atlantic Oscillation (NAO) is one of the main triggers for the variability of LSW formation. Our model results indicate that the process of dLSW formation can act as a low-pass filter to the atmospheric forcing, so that only persistent NAO events correlate with the dLSW index. Based on composite maps of the thermal and haline contributions to the surface density flux we can prove that the central Labrador Sea in the model is dominated by the thermal contributions of the surface density flux, while the haline contributions are limited to the branch of the Labrador Sea boundary current system (LSBCS), where they are dominated from the haline contributions of sea ice melting and formation. Our model results feature a shielding of the central Labrador Sea from the haline contributions by the LSBCS, which only allows a minor haline interaction with the central Labrador Sea by lateral mixing. Based on the comparison of the simulated and measured LSW layer thicknesses as well as vertical profiles of potential density, temperature and salinity we show that the FESOM model is a suitable tool to reproduce the regional dynamics of the LSW formation in a global covered context.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Institut für Umweltphysik, University of Bremen
    In:  EPIC3Bremen, Institut für Umweltphysik, University of Bremen
    Publication Date: 2015-03-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo, M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot, S., Heimbach, P., Holliday, N. P., Hummels, R., Jackson, L. C., Karstensen, J., Lankhorst, M., Le Bras, I. A., Lozier, M. S., McDonagh, E. L., Meinen, C. S., Mercier, H., Moat, B., I., Perez, R. C., Piecuch, C. G., Rhein, M., Srokosz, M. A., Trenberth, K. E., Bacon, S., Forget, G., Goni, G., Kieke, D., Koelling, J., Lamont, T., McCarthy, G. D., Mertens, C., Send, U., Smeed, D. A., Speich, S., van den Berg, M., Volkov, D., & Wilson, C. Atlantic meridional overturning circulation: Observed transport and variability. Frontiers in Marine Science, 6, (2019): 260, doi:10.3389/fmars.2019.00260.
    Description: The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
    Description: OSNAP is funded by the US National Science Foundation (NSF, OCE-1259013), UK Natural Environment Research Council (NERC, projects: OSNAP NE/K010875/1, Extended Ellett Line and ACSIS); China's national key research and development projects (2016YFA0601803), the National Natural Science Foundation of China (41521091 and U1606402) and the Fundamental Research Funds for the Central Universities (201424001); the German Ministry BMBF (RACE program); Fisheries and Oceans Canada (DFO: AZOMP). Additional support was received from the European Union 7th Framework Programme (FP7 2007–2013: NACLIM 308299) and the Horizon 2020 program (Blue-Action 727852, ATLAS 678760, AtlantOS 633211), and the French Centre National de la Recherche Scientifique (CNRS). RAPID and MOCHA moorings at 26°N are funded by NERC and NSF (OCE1332978). ABC fluxes is funded by the NERC RAPID-AMOC program (grant number: NE/M005046/1). Florida Current cable array is funded by the US National Oceanic and Atmospheric Administration (NOAA). The Meridional Overturning Variability Experiment (MOVE) was funded by the NOAA Climate Program Office-Ocean Observing and Monitoring Division, and initially by the German Federal Ministry of Education and Research (BMBF). SAMBA 34.5°S is funded by the NOAA Climate Program Office-Ocean Observing and Monitoring Division (100007298), the French SAMOC project (11–ANR-56-004), from Brazilian National Council for Scientific and Technological development (CNPq: 302018/2014-0) and Sao Paulo Research Foundation (FAESP: SAMOC-Br grants 2011/50552-4 and 2017/09659-6), the South African DST-NRF-SANAP program and South African Department of Environmental Affairs. The Line W project was funded by NSF (grant numbers: OCE-0726720, 1332667, and 1332834), with supplemental contributions from Woods Hole Oceanographic Institution (WHOI)'s Ocean and Climate Change Institute. The Oleander Program is funded by NOAA and NSF (grant numbers: OCE1536517, OCE1536586, OCE1536851). The 47°N array NOAC is funded by the BMBF (grant numbers: 03F0443C, 03F0605C, 03F0561C, 03F0792A). The Senate Commission of Oceanography from the DFG granted shiptime and costs for travel, transports and consumables. JB's work is funded by DFG under Germany's Excellence Strategy (EXC 2037 Climate, Climatic Change, and Society, Project Number: 390683824), contribution to the Center for Earth System Research and Sustainability (CEN) of Universitat Hamburg. LCJ was funded by the Copernicus Marine Environment Monitoring Service (CMEMS: 23-GLO-RAN LOT 3). MSL was supported by the Overturning in the Subpolar North Atlantic Program (NSF grant: OCE-1259013). GDM was supported by the Blue-Action project (European Union's Horizon 2020 research and innovation programme, grant number: 727852). HM was supported by CNRS. RH acknowledges financial support by the BMBF as part of the cooperative projects RACE (03F0605B, 03F0824C). The National Centre for Atmospheric Research (NCAR) is sponsored by NSF under Cooperative Agreement No. 1852977. JKO was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant NNX16AO39H).
    Keywords: Meridional overturning circulation ; Thermohaline circulation ; Observing systems ; Ocean heat transport ; Carbon storage ; Moorings ; Circulation variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...