GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schlagwort(e): Environmental engineering. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (300 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Sprache: Englisch
    Anmerkung: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Environmental engineering. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (302 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128218976
    DDC: 543
    Sprache: Englisch
    Anmerkung: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Analytical Techniques for Environmental a... -- Copyright -- Contents -- Contributors -- Chapter 1: Conventional and advanced techniques of wastewater monitoring and treatment -- 1. Introduction -- 2. Water pollutants: Origin and consequences -- 3. Wastewater analysis -- 3.1. Lab-based analytical methods -- 3.2. Field monitoring techniques -- 3.2.1. Biosensors -- Biosensors for detection of organic contaminants in wastewater -- Biosensors for detection of inorganic contaminants in water -- Biosensors for detection of microorganisms in water -- 3.2.2. Nanoparticle-assisted sensing platform -- 3.2.3. Paper-based microfluidics sensors -- 3.2.4. Soft sensors -- 3.3. Wireless sensor networks -- 4. Wastewater treatment -- 4.1. Conventional wastewater treatment methods -- 4.1.1. Primary treatment -- 4.1.2. Secondary treatment -- Aerobic treatment -- Anaerobic treatment -- Activated sludge process -- Biological filters -- Vermifiltration -- Rotating biological contractors -- Phytoremediation -- Microbial fuel cells -- 4.1.3. Tertiary treatment -- 4.2. Advanced wastewater treatment methods -- 4.2.1. Membrane filtration -- 4.2.2. Advanced oxidation processes -- 4.2.3. UV irradiation -- 4.2.4. Other advanced methods -- 4.3. Commercialized wastewater treatments -- 5. Future perspectives -- References -- Chapter 2: UV-vis spectrophotometry for environmental and industrial analysis -- 1. Introduction -- 2. The electromagnetic spectrum -- 2.1. Electronic photophysical process -- 3. Limitations of Beer-Lambert Law -- 4. Importance of UV-vis spectroscopy for analysis -- 4.1. Quantitative analysis -- 4.2. Qualitative analysis -- 4.3. UV-vis spectrophotometry for environmental analysis -- 5. Water analysis -- 6. Polymer analysis -- 7. Microcarbon analysis -- 8. Dye analysis. , 8.1. Measurement of change in coloration -- 8.2. Removal of metal salts -- 8.3. Regulations in environmental control -- 8.4. Wastewater fingerprinting -- 8.5. Colored ink -- 8.6. UV-vis spectrophotometry for industrial analysis -- 8.6.1. Presence of colorants -- 8.6.2. Removal of colorants -- 8.7. Presence of organic content -- 8.8. Presence of natural products -- 8.9. Petrochemical industry -- 8.10. Waste management -- 9. Conclusion -- References -- Chapter 3: Chemical oxygen demand and biochemical oxygen demand -- 1. Introduction -- 2. Redox chemistry in water -- 3. Oxygen demand [1, 2] -- 4. Biological oxygen demand -- 5. Analysis of biochemical oxygen demand -- 5.1. Standard method -- 5.1.1. Winkler's method [6] -- 5.2. Technological advancement in standard methods -- 5.3. BOD methods for rapid determination of results -- 6. Chemical oxygen demand (COD) -- 6.1. Chemical reactions involved in COD determination [16] -- 6.2. Modification of conventional COD method -- 6.3. Mercury free methods -- 6.4. Electrochemical and photocatalytic methods (lesser chemical use) -- 7. Conclusion -- References -- Chapter 4: Soil and sediment analysis -- 1. Introduction -- 2. Methods for analysis of organic compounds -- 2.1. Pharmaceuticals -- 2.2. Phenols-alkylphenols and bisphenol A -- 2.3. Polycyclic aromatic hydrocarbons -- 2.4. Phthalates -- 2.5. Organometallic and organometalloid compounds -- 3. Microplastics -- 4. Quality assurance -- Funding -- References -- Chapter 5: Liquid chromatography-mass spectrometry techniques for environmental analysis -- 1. Introduction -- 2. Advances in extraction techniques of environmental samples for LC-MS -- 2.1. Microextraction techniques -- 2.2. Extraction techniques involving nanomaterials -- 2.3. Extraction techniques involving ionic liquids -- 3. Advances in liquid chromatography instrumentation. , 4. Advances in mass spectrometry detection -- 5. Applications of LC/MS for environmental analysis -- 6. Conclusions -- References -- Chapter 6: Green analytical chemistry for food industries -- 1. Introduction -- 2. Analytical detection -- 2.1. Qualitative methods -- 2.2. Quantitative methods -- 3. Emerging extraction technologies -- 3.1. Supercritical fluid extraction -- 3.2. Pressurized liquid extraction -- 3.3. Microwave-assisted extraction -- 3.4. Ultrasound-assisted extraction -- 4. Miniaturization of online emerging extraction techniques with analytical detection: Current trends in the use of SFE a ... -- 4.1. Sample preparation: Extraction vessel packaging -- 4.2. Extraction mode -- 4.2.1. Selection of the mobile phase -- 4.3. Separation and detection of analytes -- 5. Conclusion -- References -- Chapter 7: Immunoassays applications -- 1. Introduction -- 2. Conventional vs microscale immunoassay sensors -- 3. Substrates -- 3.1. Silicon -- 3.2. Glass -- 3.3. Polymers -- 3.4. Paper -- 3.5. Hybrid -- 4. Fluid transport mechanisms -- 4.1. Active -- 4.2. Passive -- 5. Detection methodologies -- 5.1. Colorimetric -- 5.2. Fluorescence -- 5.3. Surface plasmon resonance -- 5.4. Electrochemical -- 5.5. Mechanical -- 6. Conclusions and outlook -- References -- Chapter 8: High-performance liquid chromatographic techniques for determination of organophosphate pesticides in complex matr -- 1. Introduction -- 2. Environmental fate of pesticides -- 3. Analytical methods used for pesticides determination -- 4. High-performance liquid chromatography -- 4.1. Types of HPLC -- 4.1.1. Normal-phase HPLC -- 4.1.2. Reverse-phase HPLC -- 4.2. HPLC column -- 4.3. Mode of elution -- 4.3.1. Isocratic HPLC -- 4.3.2. Gradient HPLC -- 4.4. Detectors used for the analysis of organophosphate pesticides -- 5. Sample preparation for HPLC analysis of organophosphate pesticides. , 6. Detection and quantification of organophosphate pesticides from complex matrices using high-performance liquid chromat ... -- References -- Chapter 9: Application of the GC/MS technique in environmental analytics: Case of the essential oils -- 1. Introduction -- 2. GC/MS as a modern technique for analysis of essential oils -- 3. Practical application of the polar column in the analysis of essential oils -- 4. Conclusion -- References -- Chapter 10: Remote sensing for environmental analysis: Basic concepts and setup -- 1. Introduction -- 2. Practical examples -- 2.1. Improving environmental assessments through remote sensing -- 3. Key concepts to/in remote sensing -- 4. Historical background of remote sensing -- 4.1. Historical beginning -- 4.2. Remote sensing to environment applications -- 4.2.1. Hyperspectral imaging -- 4.2.2. Field spectrometry -- 4.2.3. Light detection and ranging (LiDAR) -- 5. Remote sensing sensors -- 5.1. Imaging sensors -- 5.2. Non-imaging sensors -- 6. Quality assurance and quality control (QA/QC) in environmental monitoring by remote sensing -- 7. Perspectives and conclusion -- References -- Chapter 11: Materials science and lab-on-a-chip for environmental and industrial analysis -- 1. Introduction -- 2. Lab-on-a-chip concept and components -- 3. Materials science on LOC technology -- 4. Environmental analysis and pollutant monitoring -- 5. Autonomous LOC prototype -- 6. Challenges and future prospects of LOC technology -- 7. Conclusion -- References -- Chapter 12: Destructive and nondestructive techniques of analyses of biofuel characterization and thermal valorization -- 1. Introduction -- 2. Materials preparation -- 2.1. Thermal densification processes -- 2.2. Mechanical densification processes -- 3. Destructive analyses for materials characterization -- 3.1. Generalities on destructive methods. , 3.2. Destructive methods in solid biofuel characterization -- 3.2.1. Thermogravimetry analysis (ATG) -- 3.2.2. High heating value determination -- 3.2.3. Ultimate analysis -- 4. Nondestructive methods for material characterization -- 4.1. Generalities -- 4.2. Nondestructive methods in solid biofuel characterization -- 4.2.1. Inductively coupled plasma atomic emission spectroscopy technique -- 4.2.2. Gaseous emission analysis using TESTO equipment -- 4.2.3. Particulate matter (PM) measurements -- 4.2.4. Bottom ash characterization and measurements -- References -- Chapter 13: Application of nanoparticles as a chemical sensor for analysis of environmental samples -- 1. Introduction -- 2. Synthesis of nanoparticles (NPs) -- 2.1. Platinum nanoparticles (PtNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Silver nanoparticles (AgNPs) -- 2.4. Copper nanoparticles (CuNPs) -- 2.5. Silica nanoparticles (SiNPs) -- 2.6. Magnetic nanoparticles (MNPs) -- 2.7. Carbon nanotubes (CNTs) -- 2.8. Graphene quantum dots (GQDs) -- 3. Characterization of nanoparticles -- 4. Properties of nanoparticles -- 4.1. Surface plasmon resonance (SPR) and color of NPs -- 4.2. Surface area -- 4.3. Magnetic properties -- 4.4. Electronic properties -- 5. Different class of chemical substances -- 5.1. Heavy metals -- 5.1.1. Essential metals -- 5.1.2. Toxic metals -- 5.2. Pesticides and fungicides -- 5.3. Aromatic and VOC's compounds -- 5.4. Surfactants -- 5.5. Other chemical substances -- 6. Analytical techniques for detection of chemical substance in environmental samples -- 6.1. Colorimetric sensing -- 6.2. Fluorescence sensing -- 6.3. Electrochemical sensing -- 6.4. Surface-enhanced Raman spectroscopic (SERS) sensing -- 7. Conclusions -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Chemistry. ; Engineering. ; Environment. ; Materials science. ; Aufsatzsammlung ; Grüne Chemie
    Beschreibung / Inhaltsverzeichnis: Biomass-derived polyurethanes for sustainable future -- Mechanochemistry: a power tool for green synthesis -- Future trends in green synthesis -- Green synthesis of hierarchically structured metal and metal oxide nanomaterials -- Bioprivileged molecules -- Application of membrane in reaction engineering for green synthesis -- Photoenzymatic green synthesis -- Biomass derived carbons and their energy applications.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VI, 301 p. 259 illus., 83 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9783030678845
    Serie: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    RVK:
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Microbiology. ; Microbial ecology. ; Environmental engineering. ; Biotechnology. ; Mikrobieller Abbau
    Beschreibung / Inhaltsverzeichnis: 1 Microbial degradation of aflatoxin -- 2 Recent Advances in Microbial Degradation -- 3 Microbial Degradation in the Biogas Production of Value-added Compounds -- 4 Microbial Degradation of Disinfectants -- 5 Application of Microalgae Consortia / Cocultures in Wastewater Treatment -- 6 Microbial Degradation of Food Products -- 7 Microbial Degradation of Xenobiotic Compounds -- 8 Microbial Degradation in the Production of Value-added Compounds: Biohydrogen from Dark Fermentation and Microbial Electrolysis cell -- 9 Microbial Degradation of Lipids -- 10 Microbial Degradation of Steroids -- 11 Microbial Degradation of Phenol and Phenolic Compounds -- 12 Microbial Degradation of Chlorophenolic Compounds -- 13 Microbial Degradation of Proteins -- 14 The Microbial Degradation of Microplastics -- 15 Microbial Degradation of Antibiotics from Effluents -- 16 Microbial Degradation of Oils -- 17 Microbial Degradation of Biowaste for Hydrogen Production -- 18 Microorganisms and Soil Bioremediation: An Environmental Approach -- 19 Applications of Microbes in Bioremediation of Water Pollutants. .
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VII, 483 p. 88 illus., 34 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9789811605185
    Serie: Environmental and Microbial Biotechnology
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Engineering. ; Environment. ; Materials science. ; Energy. ; Chemistry.
    Beschreibung / Inhaltsverzeichnis: Waterborne Polyurethanes for Corrosion Protection -- Waterborne Polyurethane-Polyacrylate Hybrids -- Applications of Cationic Waterborne Polyurethanes -- Waterborne polyurethanes additive technologies -- Waterborne Polyurethanes in Sustainability Development -- Properties and characterization techniques for waterborne polyurethanes -- Novel research areas of applications for waterborne polyurethanes -- Applications of Polymeric Materials in Biomedical Engineering -- Applications Of Waterborne Polyurethanes Foams -- Waterborne polyurethane-metal oxide nanocomposite applications -- Waterborne polyurethanes for biomedical applications -- Biomedical and environmental applications of waterborne polyurethane-metal oxide nanocomposites.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(V, 192 p. 92 illus., 69 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9783030728694
    Serie: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Chemistry. ; Environment. ; Engineering. ; Materials science.
    Beschreibung / Inhaltsverzeichnis: Chemical valorization of CO2 -- Progress in Catalysts for CO2 reforming -- Fuel Generation From Co2 -- Thermodynamics of CO2 conversion -- Enzymatic CO2 Conversion -- Electrochemical CO2 conversion -- Supercritical carbon dioxide mediated organic transformations -- Theoretical approaches to CO2 transformations -- Carbon Dioxide Conversion Methods -- Closing the carbon cycle -- Carbon Dioxide Utilization To Energy And Fuel -- Ethylenediamine-Carbonic Anhydrase Complex For Co2 Sequestration -- GREEN PATHWAY OF CO2 CAPTURE -- Carbon-derivatives from CO2 -- Catalysis for CO2 Conversion; Perovskite based catalysts -- Thermodynamics of CO2 conversion -- Carbon dioxide based green solvents -- State-of-the-art overview of CO2 conversions.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VI, 353 p. 204 illus., 134 illus. in color.)
    Ausgabe: 1st ed. 2022.
    ISBN: 9783030728779
    Serie: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Materials science. ; Environment. ; Energy. ; Engineering. ; Water. ; Chemistry.
    Beschreibung / Inhaltsverzeichnis: Natural zeolites for sea water desalination -- Desalination Using Electrodialysis -- Membrane fouling in desalination -- Zeolite Membranes for Desalination -- Integrating desalination systems -- Reverse Osmosis Desalination -- Desalination by Membrane Distillation -- Nuclear Desalination -- Desalination battery -- Carbon nanotubes composite membrane for water desalination -- Integrated Desalination Systems Coupled With Nuclear Reactors -- Carbon based materials for desalination -- Microbial Desalination -- Graphene composite membrane for water desalination -- Renewable energy assisted desalination.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VI, 254 p. 145 illus., 113 illus. in color.)
    Ausgabe: 1st ed. 2021.
    ISBN: 9783030728731
    Serie: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...