GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 05.04. Instrumentation and techniques of general interest  (2)
  • Electronic books.  (1)
  • 1
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands,
    Schlagwort(e): Emergency management-Congresses. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (456 pages)
    Ausgabe: 1st ed.
    ISBN: 9789402420463
    Serie: NATO Science for Peace and Security Series C: Environmental Security Series
    DDC: 363.34
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Introduction -- References -- Contents -- Part I The Role of NATO -- 1 NATO Cooperation with Georgia in the Framework of the Science for Peace and Security (SPS) Programme -- 1.1 The Science for Peace and Security (SPS) Programme -- 1.2 SPS Cooperation with Georgia -- 1.3 Securing Georgia and the Caucasus Against Geohazards -- 1.4 Conclusion -- 2 Lens on NATO-Georgia Cooperation: A Shared Engagement -- 3 An Overview of the 20-Year Collaboration Between NATO and Earth Scientists to Assess Geohazards in the Caucasus and Other Critical Regions -- 3.1 Introduction -- 3.2 Project CLG 982957 - Volcanic Hazards and Countermeasures for Georgian Section of Caspian Pipelines -- 3.2.1 Summary of the Project -- 3.2.2 Why this Project -- 3.2.3 Outcomes -- 3.3 Project G4934 - Security Against Geohazards at the Major Enguri Hydroelectric Scheme in Georgia -- 3.3.1 Summary of the Project -- 3.3.2 Why this Project -- 3.3.3 Outcomes -- 3.4 Project SFP 983142 - Geo-Environmental Security of the Toktogul Hydroelectric Power Station Region, Central Asia -- 3.4.1 Summary of the Project -- 3.4.2 Why this Project -- 3.4.3 Outcomes -- 3.5 CLG Project 978989 - A Multidisciplinary Approach to Recent Geologic Catastrophes at Subduction Zones -- 3.5.1 Summary of the Project -- 3.5.2 Why this Project -- 3.5.3 Outcomes -- 3.6 Discussion and Final Remarks -- References -- Part II Key Studies Focused on Regional and Geological Aspects -- 4 Active Kinematics of the Greater Caucasus from Seismological and GPS Data: A Review -- 4.1 Introduction -- 4.2 Main Tectonic Features of Greater Caucasus -- 4.3 Seismicity of the Greater Caucasus -- 4.3.1 Source of Data -- 4.3.2 Epicentre Distribution -- 4.3.3 Hypocentres Distribution -- 4.3.4 Focal Mechanism Solutions -- 4.3.4.1 Data Source -- 4.3.4.2 FMS Results -- 4.3.5 Stress Distribution -- 4.4 GPS Data. , 4.4.1 Data Source -- 4.4.2 Results -- 4.5 Discussion -- 4.5.1 Seismicity -- 4.5.2 Active Fault Kinematics -- 4.5.3 Stress Field and GPS Deformation Field -- 4.6 Conclusions -- References -- 5 Structural Architecture of the Western Greater Caucasus Orogen: New Data from a Crustal-Scale Structural Cross-Section -- 5.1 Introduction -- 5.2 Tectonic Setting -- 5.3 The Crustal-Scale Structural Cross-Section -- 5.4 Discussion -- 5.5 Conclusions -- References -- 6 The Geometry of the Two Orogens Convergence and Collision Zones in Central Georgia: New Data from Seismic Reflection Profiles -- 6.1 Introduction -- 6.2 Geological Setting -- 6.3 Interpretation of Seismic Reflection Profiles -- 6.4 Discussion -- 6.5 Conclusions -- References -- 7 Regional Seismotectonic Zonation of Hydrocarbon Fields in Active Thrust Belts: A Case Study from Italy -- 7.1 Introduction -- 7.2 Triggered Versus Induced Seismicity -- 7.3 Stratigraphic and Structural Framework of the Italian Petroleum Systems -- 7.4 From Hydrocarbon Wells to Hydrocarbon Fields (HFs) and Hydrocarbon Field Assemblages (HFAs) -- 7.5 Kinematic Zonation of HFAs -- 7.6 Seismicity Versus HFAs -- 7.7 The Seismogenic Provinces -- 7.7.1 The Extensional Intermountain Province -- 7.7.2 The Deep and Shallow Compressional Province -- 7.7.3 The Strike-Slip Province -- 7.8 Seismotectonic Map of Hydrocarbon Field Assemblages (HFAs) -- 7.9 Final Remarks -- References -- Part III Key Studies for Seismic Hazard Assessment -- 8 The 2020 National Seismic Hazard Model for Georgia (Sakartvelo) -- 8.1 Introduction -- 8.2 Historical Review of the Development of Seismic Hazard Maps for Georgia -- 8.3 Developing the Seismic Hazard Model of Georgia -- 8.3.1 Earthquake Catalogue -- 8.3.1.1 Catalogue Compilation -- 8.3.1.2 Magnitude Homogenization -- 8.3.1.3 Declustering of the Earthquake Catalogue. , 8.3.1.4 Magnitude and Time Completeness -- 8.3.2 Regional Geology and Tectonics -- 8.3.3 Seismogenic Source Models -- 8.3.3.1 Area Source Model -- 8.3.3.2 Active Faults and Background Seismicity Model -- 8.3.3.3 Maximum Magnitude -- 8.4 Ground Motion Modelling -- 8.5 Logic Tree and Model Uncertainties -- 8.6 Ground Motion Hazard Assessment: Results -- 8.7 Hazard Disaggregation for the Selected Site -- 8.8 Conclusions and Future Perspectives -- 8.9 Data and Resources -- References -- 9 Non-ergodic Ground-Motion Models for Crustal Earthquakes in Georgia -- 9.1 Introduction -- 9.2 Nonergodic Seismic Hazard Analysis -- 9.2.1 Non-ergodic GMMs -- 9.3 Non-ergodic GMMs for California -- 9.4 Ground-Motion Data Set for Georgia -- 9.5 Non-ergodic GMM for Georgia -- 9.6 Conclusions -- References -- 10 Time Series Analysis of Fault Strain Accumulation Around Large Dam: The Case of Enguri Dam, Greater Caucasus -- 10.1 Introduction -- 10.2 Data -- 10.3 Recurrence Intervals and Magnitudes Time Series Analysis -- 10.4 Results -- 10.5 Discussion -- 10.6 Detection of an Anomalous Behavior of the Dam Using Complexity Analysis of Dam Tilts -- 10.7 Conclusions -- References -- 11 Geohazard Assessment Along the Southern Slope of the Greater Caucasus (Azerbaijan) -- 11.1 Introduction -- 11.2 The Study Area -- 11.3 Methodology -- 11.4 Conclusions -- References -- Part IV Key Studies for Volcanic Hazard Assessment -- 12 Quaternary Volcanic Activity in the Greater Caucasus: A Review of Elbrus, Kazbek and Keli Volcanoes -- 12.1 Introduction and Background -- 12.2 The Kazbek Neovolcanic Centre -- 12.2.1 Phase I (Mid-Pleistocene, 460-380 ka) -- 12.2.2 Phase II (Middle Pleistocene, 310-200 ka) -- 12.2.2.1 Early Episode of Phase II (II1-310-260 ka) -- 12.2.2.2 Late Episode of Phase II (II2-240-200 ka) -- 12.2.3 Phase III (Late Pleistocene, 130-90 ka). , 12.2.3.1 Early Episode of the Third Phase of Activity (III1-130-90 ka) -- 12.2.3.2 Late Episode of Phase III (III2-130-90 ka) -- 12.2.4 Phase IV (Late Pleistocene-Holocene, < -- 50 ka) -- 12.3 The Keli Neovolcanic Centre -- 12.3.1 Phase I (Middle Pleistocene, 245-170 ka) -- 12.3.2 Phase II (Late Pleistocene, 135-70 ka) -- 12.3.2.1 Early Episode of the Phase II (II1-135-100 ka) -- 12.3.2.2 Late Episode of the Phase II (II2-100-70 ka) -- 12.3.3 Phase III (Late Pleistocene-Holocene, < -- 30 ka) -- 12.4 Elbrus Neovolcanic Centre -- 12.4.1 Phase I (End of the Eopleistocene, 950-900 ka) -- 12.4.2 Phase II (Early Neopleistocene - 800-700 ka) -- 12.4.3 Phase III (Middle Neopleistocene, 225-170 ka) -- 12.4.4 Phase IV (Late Neopleistocene, 110-70 ka) -- 12.4.5 Phase V (Late Neopleistocene-Holocene, < -- 35 ka) -- 12.5 Final Remarks -- References -- 13 Tectonic Control Over the Abuli Samsari Volcanic Ridge, Lesser Caucasus, Georgia -- 13.1 Introduction -- 13.2 Geological Setting -- 13.3 Methods -- 13.3.1 Volcanic Centres and Tectonic Lineaments -- 13.3.2 Areal Density of Volcanic Centres -- 13.3.3 Inferring Magma Pathway Azimuth -- 13.4 Results -- 13.4.1 Volcanic Centres and Lineaments Identification -- 13.4.2 Areal Density of Volcanic Centers -- 13.4.3 Inferring the Direction of Magma Pathways -- 13.4.4 Field Data -- 13.5 Discussion -- 13.5.1 Geological-Structural Features -- 13.5.2 Seismic and Volcanic Hazard Assessment -- 13.6 Conclusions -- References -- Part V Key Studies for Hydrological, Landslide and Coastal Hazard Assessment -- 14 Landslide and Mudflow Hazard Assessment in Georgia -- 14.1 Rationale -- 14.2 Morphological Aspects of the Territory -- 14.3 The Influence of Climate and Weather -- 14.4 Classification of Landslide Types in the Territory of Georgia -- 14.5 New Hazard Maps Calculation -- 14.6 Results. , 14.7 Final Remarks and Future Developments -- References -- 15 Significance of the Spatial Resolution of DEM in Regional Slope Stability Analysis Enguri Dam, Republic of Georgia -- 15.1 Introduction and Background -- 15.2 Study Area -- 15.3 Data and Method -- 15.3.1 Model Inputs -- 15.3.2 GIS - TISSA -- 15.4 Results -- 15.5 Discussion -- 15.6 Conclusions -- References -- 16 Description of a 2-Year, High-Resolution Geodetic Monitoring of the Khoko Landslide, Enguri Reservoir, Georgia -- 16.1 Introduction -- 16.2 Materials and Methods -- 16.3 Results -- 16.3.1 First Observation Period -- 16.3.2 Second Observation Period -- 16.3.3 Third Observation Period -- 16.3.4 Entire Observation Period -- 16.4 Final Remarks -- References -- 17 Examples of Coastal Hazard Along the Georgian Black Sea Coast -- 17.1 Introduction -- 17.2 The Chorokhi Lithodynamic System (Southern Region) -- 17.3 The Central Coastline -- 17.3.1 Supsa-Natanebi -- 17.3.2 Kolkheti Coastal Zone -- 17.4 Abkhazia (Northern Region) -- 17.5 Final Remarks -- References -- Part VI Seismic Microzonation -- 18 Extensive Microzonation as a Tool for Seismic Risk Reduction: Methodological and Political Issues -- 18.1 Introduction -- 18.2 The Italian Guidelines for Seismic Microzonation (IGSM) -- 18.3 Implementation of Microzonation Studies in Italy -- 18.4 Conclusions -- References -- 19 Preliminary Results of Site Effects Assessment in Mtskheta (Georgia) -- 19.1 Introduction -- 19.2 Tectonic Setting and Seismicity -- 19.3 Geological Setting -- 19.4 Dataset of Geophysical Measurements -- 19.5 Results -- 19.6 Response Spectra and Amplification Factors with the Conventional Vs,30 Site Proxy -- 19.7 Conclusions -- References -- 20 Rheological Properties of Soils in Assessing the Seismic Hazard of the South Ukrainian Nuclear Power Plant -- 20.1 Introduction -- 20.2 Ground Response Analysis. , 20.3 Site Amplification in the South Ukrainian Nuclear Power Plant.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-01-11
    Beschreibung: Immersive virtual reality can potentially open up interesting geological sites to students, academics and others who may not have had the opportunity to visit such sites previously. We study how users perceive the usefulness of an immersive virtual reality approach applied to Earth Sciences teaching and communication. During nine immersive virtual reality-based events held in 2018 and 2019 in various locations (Vienna in Austria, Milan and Catania in Italy, Santorini in Greece), a large number of visitors had the opportunity to navigate, in immersive mode, across geological landscapes reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. The reconstructed virtual geological environments are specifically chosen virtual geosites, from Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). Following the user experiences, we collected 459 questionnaires, with a large spread in participant age and cultural background. We find that the majority of respondents would be willing to repeat the immersive virtual reality experience, and importantly, most of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this approach for geo-education purposes.
    Beschreibung: This research has been provided in the framework of the following projects: (i) the MIUR project ACPR15T4_00098–Argo3D (http://argo3d.unimib.it/ (accessed on 26 November 2021)); (ii) 3DTeLC Erasmus + Project 2017-1-UK01-KA203-036719 (http://www.3dtelc.com (accessed on 26 November 2021)); (iii) EGU 2018 Public Engagement Grant (https://www.egu.eu/outreach/peg/ (accessed on 26 November 2021)). Agisoft Metashape is acknowledged for photogrammetric data processing. This article is also an outcome of Project MIUR–Dipartimenti di Eccellenza 2018–2022. Finally, this paper is an outcome of the Virtual Reality lab for Earth Sciences—GeoVires lab (https://geovires.unimib.it/ (accessed on 26 November 2021)). The work supports UNESCO IGCP 692 ‘Geoheritage for Resilience’.
    Beschreibung: Published
    Beschreibung: 9
    Beschreibung: 1TM. Formazione
    Beschreibung: JCR Journal
    Schlagwort(e): immersive virtual reality ; geology; ; photogrammetry; ; education; ; Iceland; ; Santorini ; Etna ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-27
    Beschreibung: Field-based classes in geological sciences are crucial components of geoscience education and research. Owing to the COVID-19 pandemic, such activities became problematic due to limitations such as travel restrictions and lockdown periods: this motivated the geoeducational community to tailor new ways to engage people in field activities. As a result, we adopted Immersive Virtual Reality as a tool to involve students, academics, and the lay public in field exploration, thus making geological exploration accessible also to people affected by permanent or temporary motor disabilities. In particular, we evaluated how users perceive the usefulness of this approach as applied to Earth Science learning and teaching, through nine outreach events, where a total of 459 participants were involved, with different ages and cultural backgrounds. The participants explored, in an immersive mode, four geological landscapes, defined as virtual geological environments, which have been reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. They include: Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). After the exploration, each participant filled in an anonymous questionnaire. The results show that the majority would be willing to repeat the experience, and, most importantly, the majority of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this technique for geo-education purposes. Our approach can be considered as a groundbreaking tool and an innovative democratic way to access information and experiences, as well as to promote inclusivity and accessibility in geo-education, while reducing travel costs, saving time, and decreasing the carbon footprint. This work has been carried out in the framework of the following projects: i) ACPR15T4_ 00098 “Agreement between the University of Milan Bicocca and the Cometa Consortium for the experimentation of cutting-edge interactive technologies for the improvement of science teaching and dissemination” of Italian Ministry of Education, University and Research (ARGO3D - https://argo3d.unimib.it/); ii) Erasmus+ Key Action 2 2017-1-UK01-KA203- 036719 “3DTeLC – Bringing the 3D-world into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments” (http://3dtelc.lmv.uca.fr/; https://www.3dtelc.com/); iii) 2018 EGU Public Engagement Grants (https://www.egu.eu/outreach/peg/).
    Beschreibung: This work has been carried out in the framework of the following projects: i) ACPR15T4_ 00098 “Agreement between the University of Milan Bicocca and the Cometa Consortium for the experimentation of cutting-edge interactive technologies for the improvement of science teaching and dissemination” of Italian Ministry of Education, University and Research (ARGO3D - https://argo3d.unimib.it/); ii) Erasmus+ Key Action 2 2017-1-UK01-KA203- 036719 “3DTeLC – Bringing the 3D-world into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments” (http://3dtelc.lmv.uca.fr/; https://www.3dtelc.com/); iii) 2018 EGU Public Engagement Grants (https://www.egu.eu/outreach/peg/).
    Beschreibung: Published
    Beschreibung: Vienna (Austria)
    Beschreibung: 1TM. Formazione
    Schlagwort(e): Virtual Reality ; geology ; tectonophysics ; education ; 04.07. Tectonophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Conference paper
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...