GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Emergency management-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 9789402420463
    Series Statement: NATO Science for Peace and Security Series C: Environmental Security Series
    DDC: 363.34
    Language: English
    Note: Intro -- Preface -- Introduction -- References -- Contents -- Part I The Role of NATO -- 1 NATO Cooperation with Georgia in the Framework of the Science for Peace and Security (SPS) Programme -- 1.1 The Science for Peace and Security (SPS) Programme -- 1.2 SPS Cooperation with Georgia -- 1.3 Securing Georgia and the Caucasus Against Geohazards -- 1.4 Conclusion -- 2 Lens on NATO-Georgia Cooperation: A Shared Engagement -- 3 An Overview of the 20-Year Collaboration Between NATO and Earth Scientists to Assess Geohazards in the Caucasus and Other Critical Regions -- 3.1 Introduction -- 3.2 Project CLG 982957 - Volcanic Hazards and Countermeasures for Georgian Section of Caspian Pipelines -- 3.2.1 Summary of the Project -- 3.2.2 Why this Project -- 3.2.3 Outcomes -- 3.3 Project G4934 - Security Against Geohazards at the Major Enguri Hydroelectric Scheme in Georgia -- 3.3.1 Summary of the Project -- 3.3.2 Why this Project -- 3.3.3 Outcomes -- 3.4 Project SFP 983142 - Geo-Environmental Security of the Toktogul Hydroelectric Power Station Region, Central Asia -- 3.4.1 Summary of the Project -- 3.4.2 Why this Project -- 3.4.3 Outcomes -- 3.5 CLG Project 978989 - A Multidisciplinary Approach to Recent Geologic Catastrophes at Subduction Zones -- 3.5.1 Summary of the Project -- 3.5.2 Why this Project -- 3.5.3 Outcomes -- 3.6 Discussion and Final Remarks -- References -- Part II Key Studies Focused on Regional and Geological Aspects -- 4 Active Kinematics of the Greater Caucasus from Seismological and GPS Data: A Review -- 4.1 Introduction -- 4.2 Main Tectonic Features of Greater Caucasus -- 4.3 Seismicity of the Greater Caucasus -- 4.3.1 Source of Data -- 4.3.2 Epicentre Distribution -- 4.3.3 Hypocentres Distribution -- 4.3.4 Focal Mechanism Solutions -- 4.3.4.1 Data Source -- 4.3.4.2 FMS Results -- 4.3.5 Stress Distribution -- 4.4 GPS Data. , 4.4.1 Data Source -- 4.4.2 Results -- 4.5 Discussion -- 4.5.1 Seismicity -- 4.5.2 Active Fault Kinematics -- 4.5.3 Stress Field and GPS Deformation Field -- 4.6 Conclusions -- References -- 5 Structural Architecture of the Western Greater Caucasus Orogen: New Data from a Crustal-Scale Structural Cross-Section -- 5.1 Introduction -- 5.2 Tectonic Setting -- 5.3 The Crustal-Scale Structural Cross-Section -- 5.4 Discussion -- 5.5 Conclusions -- References -- 6 The Geometry of the Two Orogens Convergence and Collision Zones in Central Georgia: New Data from Seismic Reflection Profiles -- 6.1 Introduction -- 6.2 Geological Setting -- 6.3 Interpretation of Seismic Reflection Profiles -- 6.4 Discussion -- 6.5 Conclusions -- References -- 7 Regional Seismotectonic Zonation of Hydrocarbon Fields in Active Thrust Belts: A Case Study from Italy -- 7.1 Introduction -- 7.2 Triggered Versus Induced Seismicity -- 7.3 Stratigraphic and Structural Framework of the Italian Petroleum Systems -- 7.4 From Hydrocarbon Wells to Hydrocarbon Fields (HFs) and Hydrocarbon Field Assemblages (HFAs) -- 7.5 Kinematic Zonation of HFAs -- 7.6 Seismicity Versus HFAs -- 7.7 The Seismogenic Provinces -- 7.7.1 The Extensional Intermountain Province -- 7.7.2 The Deep and Shallow Compressional Province -- 7.7.3 The Strike-Slip Province -- 7.8 Seismotectonic Map of Hydrocarbon Field Assemblages (HFAs) -- 7.9 Final Remarks -- References -- Part III Key Studies for Seismic Hazard Assessment -- 8 The 2020 National Seismic Hazard Model for Georgia (Sakartvelo) -- 8.1 Introduction -- 8.2 Historical Review of the Development of Seismic Hazard Maps for Georgia -- 8.3 Developing the Seismic Hazard Model of Georgia -- 8.3.1 Earthquake Catalogue -- 8.3.1.1 Catalogue Compilation -- 8.3.1.2 Magnitude Homogenization -- 8.3.1.3 Declustering of the Earthquake Catalogue. , 8.3.1.4 Magnitude and Time Completeness -- 8.3.2 Regional Geology and Tectonics -- 8.3.3 Seismogenic Source Models -- 8.3.3.1 Area Source Model -- 8.3.3.2 Active Faults and Background Seismicity Model -- 8.3.3.3 Maximum Magnitude -- 8.4 Ground Motion Modelling -- 8.5 Logic Tree and Model Uncertainties -- 8.6 Ground Motion Hazard Assessment: Results -- 8.7 Hazard Disaggregation for the Selected Site -- 8.8 Conclusions and Future Perspectives -- 8.9 Data and Resources -- References -- 9 Non-ergodic Ground-Motion Models for Crustal Earthquakes in Georgia -- 9.1 Introduction -- 9.2 Nonergodic Seismic Hazard Analysis -- 9.2.1 Non-ergodic GMMs -- 9.3 Non-ergodic GMMs for California -- 9.4 Ground-Motion Data Set for Georgia -- 9.5 Non-ergodic GMM for Georgia -- 9.6 Conclusions -- References -- 10 Time Series Analysis of Fault Strain Accumulation Around Large Dam: The Case of Enguri Dam, Greater Caucasus -- 10.1 Introduction -- 10.2 Data -- 10.3 Recurrence Intervals and Magnitudes Time Series Analysis -- 10.4 Results -- 10.5 Discussion -- 10.6 Detection of an Anomalous Behavior of the Dam Using Complexity Analysis of Dam Tilts -- 10.7 Conclusions -- References -- 11 Geohazard Assessment Along the Southern Slope of the Greater Caucasus (Azerbaijan) -- 11.1 Introduction -- 11.2 The Study Area -- 11.3 Methodology -- 11.4 Conclusions -- References -- Part IV Key Studies for Volcanic Hazard Assessment -- 12 Quaternary Volcanic Activity in the Greater Caucasus: A Review of Elbrus, Kazbek and Keli Volcanoes -- 12.1 Introduction and Background -- 12.2 The Kazbek Neovolcanic Centre -- 12.2.1 Phase I (Mid-Pleistocene, 460-380 ka) -- 12.2.2 Phase II (Middle Pleistocene, 310-200 ka) -- 12.2.2.1 Early Episode of Phase II (II1-310-260 ka) -- 12.2.2.2 Late Episode of Phase II (II2-240-200 ka) -- 12.2.3 Phase III (Late Pleistocene, 130-90 ka). , 12.2.3.1 Early Episode of the Third Phase of Activity (III1-130-90 ka) -- 12.2.3.2 Late Episode of Phase III (III2-130-90 ka) -- 12.2.4 Phase IV (Late Pleistocene-Holocene, < -- 50 ka) -- 12.3 The Keli Neovolcanic Centre -- 12.3.1 Phase I (Middle Pleistocene, 245-170 ka) -- 12.3.2 Phase II (Late Pleistocene, 135-70 ka) -- 12.3.2.1 Early Episode of the Phase II (II1-135-100 ka) -- 12.3.2.2 Late Episode of the Phase II (II2-100-70 ka) -- 12.3.3 Phase III (Late Pleistocene-Holocene, < -- 30 ka) -- 12.4 Elbrus Neovolcanic Centre -- 12.4.1 Phase I (End of the Eopleistocene, 950-900 ka) -- 12.4.2 Phase II (Early Neopleistocene - 800-700 ka) -- 12.4.3 Phase III (Middle Neopleistocene, 225-170 ka) -- 12.4.4 Phase IV (Late Neopleistocene, 110-70 ka) -- 12.4.5 Phase V (Late Neopleistocene-Holocene, < -- 35 ka) -- 12.5 Final Remarks -- References -- 13 Tectonic Control Over the Abuli Samsari Volcanic Ridge, Lesser Caucasus, Georgia -- 13.1 Introduction -- 13.2 Geological Setting -- 13.3 Methods -- 13.3.1 Volcanic Centres and Tectonic Lineaments -- 13.3.2 Areal Density of Volcanic Centres -- 13.3.3 Inferring Magma Pathway Azimuth -- 13.4 Results -- 13.4.1 Volcanic Centres and Lineaments Identification -- 13.4.2 Areal Density of Volcanic Centers -- 13.4.3 Inferring the Direction of Magma Pathways -- 13.4.4 Field Data -- 13.5 Discussion -- 13.5.1 Geological-Structural Features -- 13.5.2 Seismic and Volcanic Hazard Assessment -- 13.6 Conclusions -- References -- Part V Key Studies for Hydrological, Landslide and Coastal Hazard Assessment -- 14 Landslide and Mudflow Hazard Assessment in Georgia -- 14.1 Rationale -- 14.2 Morphological Aspects of the Territory -- 14.3 The Influence of Climate and Weather -- 14.4 Classification of Landslide Types in the Territory of Georgia -- 14.5 New Hazard Maps Calculation -- 14.6 Results. , 14.7 Final Remarks and Future Developments -- References -- 15 Significance of the Spatial Resolution of DEM in Regional Slope Stability Analysis Enguri Dam, Republic of Georgia -- 15.1 Introduction and Background -- 15.2 Study Area -- 15.3 Data and Method -- 15.3.1 Model Inputs -- 15.3.2 GIS - TISSA -- 15.4 Results -- 15.5 Discussion -- 15.6 Conclusions -- References -- 16 Description of a 2-Year, High-Resolution Geodetic Monitoring of the Khoko Landslide, Enguri Reservoir, Georgia -- 16.1 Introduction -- 16.2 Materials and Methods -- 16.3 Results -- 16.3.1 First Observation Period -- 16.3.2 Second Observation Period -- 16.3.3 Third Observation Period -- 16.3.4 Entire Observation Period -- 16.4 Final Remarks -- References -- 17 Examples of Coastal Hazard Along the Georgian Black Sea Coast -- 17.1 Introduction -- 17.2 The Chorokhi Lithodynamic System (Southern Region) -- 17.3 The Central Coastline -- 17.3.1 Supsa-Natanebi -- 17.3.2 Kolkheti Coastal Zone -- 17.4 Abkhazia (Northern Region) -- 17.5 Final Remarks -- References -- Part VI Seismic Microzonation -- 18 Extensive Microzonation as a Tool for Seismic Risk Reduction: Methodological and Political Issues -- 18.1 Introduction -- 18.2 The Italian Guidelines for Seismic Microzonation (IGSM) -- 18.3 Implementation of Microzonation Studies in Italy -- 18.4 Conclusions -- References -- 19 Preliminary Results of Site Effects Assessment in Mtskheta (Georgia) -- 19.1 Introduction -- 19.2 Tectonic Setting and Seismicity -- 19.3 Geological Setting -- 19.4 Dataset of Geophysical Measurements -- 19.5 Results -- 19.6 Response Spectra and Amplification Factors with the Conventional Vs,30 Site Proxy -- 19.7 Conclusions -- References -- 20 Rheological Properties of Soils in Assessing the Seismic Hazard of the South Ukrainian Nuclear Power Plant -- 20.1 Introduction -- 20.2 Ground Response Analysis. , 20.3 Site Amplification in the South Ukrainian Nuclear Power Plant.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...