GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; DATE/TIME; Day of experiment; Depth, top/min; DEPTH, water; Entire community; Event label; Field experiment; Fish larvae; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; Macro-nutrients; MESO; Mesocosm experiment; Mesocosm or benthocosm; Mesozooplankton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Salinity; Subtropical North Atlantic; Temperate; Temperature, water; Treatment; Type  (1)
  • BAH; German Bight, North Sea; HelgolandRoads_dinoflagellates_and_ciliates; Kabeltonne; LTER_Benthos; Macrobenthic long-term series in the German Bight; MON; Monitoring; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland)  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Löder, Martin G J; Kraberg, Alexandra Claudia; Aberle, Nicole; Peters, Silvia; Wiltshire, Karen Helen (2010): Dinoflagellates and ciliates at Helgoland Roads, North Sea. Helgoland Marine Research, 13 pp, https://doi.org/10.1007/s10152-010-0242-z
    Publication Date: 2024-01-25
    Description: A monitoring programme for microzooplankton was started at the long-term sampling station ''Kabeltonne'' at Helgoland Roads (54°11.30' N; 7°54.00' E) in January 2007 in order to provide more detailed knowledge on microzooplankton occurrence, composition and seasonality patterns at this site and to complement the existing plankton data series. Ciliate and dinoflagellate cell concentration and carbon biomass were recorded on a weekly basis. Heterotrophic dinoflagellates were considerably more important in terms of biomass than ciliates, especially during the summer months. However, in early spring, ciliates were the major group of microzooplankton grazers as they responded more quickly to phytoplankton food availability. Mixotrophic dinoflagellates played a secondary role in terms of biomass when compared to heterotrophic species; nevertheless, they made up an intense late summer bloom in 2007. The photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due to its high biomass when compared to crustacean plankton especially during the spring bloom, microzooplankton should be regarded as the more important phytoplankton grazer group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors driving microzooplankton composition and abundance are necessary for a full understanding of this important component of the plankton.
    Keywords: BAH; German Bight, North Sea; HelgolandRoads_dinoflagellates_and_ciliates; Kabeltonne; LTER_Benthos; Macrobenthic long-term series in the German Bight; MON; Monitoring; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland)
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is affecting marine ecosystems through changes in carbonate chemistry that may influence consumers of phytoplankton, often via trophic pathways. Using a mesocosm approach, we investigated OA effects on a subtropical zooplankton community during oligotrophic, bloom, and post-bloom phases under a range of different pCO2 levels (from 400 to 1480 μatm). Furthermore, we simulated an upwelling event by adding 650 m-depth nutrient-rich water to the mesocosms, which initiated a phytoplankton bloom. No effects of pCO2 on the zooplankton community were visible in the oligotrophic conditions before the bloom. The zooplankton community responded to phytoplankton bloom by increased abundances in all treatments, although the response was delayed under high-pCO2 conditions. Microzooplankton was dominated by small dinoflagellates and aloricate ciliates, which were more abundant under medium- to high-pCO2 conditions. The most abundant mesozooplankters were calanoid copepods, which did not respond to CO2 treatments during the oligotrophic phase of the experiment but were found in higher abundance under medium- and high-pCO2 conditions toward the end of the experiment, most likely as a response to increased phyto- and microzooplankton standing stocks. The second most abundant mesozooplankton taxon were appendicularians, which did not show a response to the different pCO2 treatments. Overall, CO2 effects on zooplankton seemed to be primarily transmitted through significant CO2 effects on phytoplankton and therefore indirect pathways. We conclude that elevated pCO2 can change trophic cascades with significant effects on zooplankton, what might ultimately affect higher trophic levels in the future.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; DATE/TIME; Day of experiment; Depth, top/min; DEPTH, water; Entire community; Event label; Field experiment; Fish larvae; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; Macro-nutrients; MESO; Mesocosm experiment; Mesocosm or benthocosm; Mesozooplankton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Salinity; Subtropical North Atlantic; Temperate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 3991 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...