GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 551  (1)
  • Aragonite saturation state; Area; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification intensity; Calcification intensity, standard error; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chamber number; Chromista; Coast and continental shelf; Experiment; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Globigerinoides ruber; Growth/Morphology; Heterotrophic prokaryotes; Laboratory experiment; Magnesium/Calcium ratio; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard error; Red Sea; Salinity; Single species; Species; Temperate; Temperature, water; Type  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-03-15
    Beschreibung: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Schlagwort(e): Aragonite saturation state; Area; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification intensity; Calcification intensity, standard error; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chamber number; Chromista; Coast and continental shelf; Experiment; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Globigerinoides ruber; Growth/Morphology; Heterotrophic prokaryotes; Laboratory experiment; Magnesium/Calcium ratio; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard error; Red Sea; Salinity; Single species; Species; Temperate; Temperature, water; Type
    Materialart: Dataset
    Format: text/tab-separated-values, 264 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-10-15
    Beschreibung: The Middle Eocene Climatic Optimum (MECO) was a gradual warming event and carbon cycle perturbation that occurred between 40.5 and 40.1 Ma. A number of characteristics, including greater-than-expected deep-sea carbonate dissolution, a lack of globally coherent negative δ13C excursion in marine carbonates, a duration longer than the characteristic timescale of carbon cycle recovery, and the absence of a clear trigger mechanism, challenge our current understanding of the Earth system and its regulatory feedbacks. This makes the MECO one of the most enigmatic events in the Cenozoic, dubbed a middle Eocene “carbon cycle conundrum.” Here we use boron isotopes in planktic foraminifera to better constrain pCO2 changes over the event. Over the MECO itself, we find that pCO2 rose by only 0.55–0.75 doublings, thus requiring a much more modest carbon injection than previously indicated by the alkenone δ13C-pCO2 proxy. In addition, this rise in pCO2 was focused around the peak of the 400 kyr warming trend. Before this, considerable global carbonate δ18O change was asynchronous with any coherent ocean pH (and hence pCO2) excursion. This finding suggests that middle Eocene climate (and perhaps a nascent cryosphere) was highly sensitive to small changes in radiative forcing.
    Schlagwort(e): 551 ; boron isotopes ; pCO2 reconstruction ; Middle Eocene Climatic Optimum ; carbon cycle ; paleoclimate ; cryosphere
    Sprache: Englisch
    Materialart: map
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...