GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Journal of Phycology, WILEY-BLACKWELL PUBLISHING, 53(6), pp. 1206-1222, ISSN: 0022-3646
    Publication Date: 2019-07-16
    Description: In the Argentine Sea, blooms of toxigenic dinoflagellates of the Alexandrium tamarense species complex have led to fish and bird mortalities and human deaths as a consequence of paralytic shellfish poisoning (PSP). Yet little is known about the occurrence of other toxigenic species of the genus Alexandrium, or of their toxin composition beyond coastal waters. The distribution of Alexandrium species and related toxins in the Argentine Sea was determined by sampling surface waters on an oceanographic expedition during austral spring from ~39°S to 48°S. Light microscope and SEM analysis for species identification and enumeration was supplemented by confirmatory PCR analysis from field samples. The most frequent Alexandrium taxon identified by microscopy corresponded to the classical description of A. tamarense. Only weak signals of Group I from the A. tamarense species complex were detected by PCR of bulk field samples, but phylogenetic reconstruction of rDNA sequences from single cells from one station assigned them to ribotype Group I (Alexandrium catenella). PCR probes for Alexandrium minutum and Alexandrium ostenfeldii yielded a positive signal, although A. minutum morphology did not completely match the classical description. Analysis of PSP toxin composition of plankton samples revealed toxin profiles dominated by gonyautoxins (GTX1/4). The main toxic cyclic imine detected was 13-desMe-spirolide C and this supported the association with A. ostenfeldii in the field. This study represents the first integrated molecular, morphological and toxinological analysis of field populations of the genus Alexandrium in the Argentine Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Alexandrium ostenfeldii (Paulsen) Balech and Tangen and A. peruvianum (Balech and B.R. Mendiola) Balech and Tangen are morphologically closely related dinoflagellates known to produce potent neurotoxins. Together with Gonyaulax dimorpha Biecheler, they constitute the A. ostenfeldii species complex. Due to the subtle differences in the morphological characters used to differentiate these species, unambiguous species identification has proven problematic. To better understand the species boundaries within the A. ostenfeldii complex we compared rDNA data, morphometric characters and toxin profiles of multiple cultured isolates from different geographic regions. Phylogenetic analysis of rDNA sequences from cultures characterized as A. ostenfeldii or A. peruvianum formed a monophyletic clade consisting of six distinct groups. Each group examined contained strains morphologically identified as either A. ostenfeldii or A. peruvianum. Though key morphological characters were generally found to be highly variable and not consistently distributed, selected plate features and toxin profiles differed significantly among phylogenetic clusters. Additional sequence analyses revealed a lack of compensatory base changes in ITS2 rRNA structure, low to intermediate ITS/5.8S uncorrected genetic distances, and evidence of reticulation. Together these data (criteria currently used for species delineation in dinoflagellates) imply that the A. ostenfeldii complex should be regarded a single genetically structured species until more material and alternative criteria for species delimitation are available. Consequently, we propose that A. peruvianum is a heterotypic synonym of A. ostenfeldii and this taxon name should be discontinued.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-22
    Description: Shellfish contamination with azaspiracids (AZA), which are lipophilic marine biotoxins produced by marine dinoflagellates, is a major and recurrent problem for the Irish shellfish industry. AZA are produced by certain species of Amphidomataceae, but the species diversity of this group of microalgae in Irish waters is poorly known. Here we present a morphological and molecular characterization of multiple new strains of non-toxigenic Azadinium isolated on an oceanographic survey in 2018. A lack of AZA production for all strains presented here was demonstrated by LC-MS/ MS analysis. One strain of Azadinium caudatum var. margalefii (first strain for the area) confirmed nontoxigenicity of Atlantic populations of this species. One strain designated as Azadinium cf. zhuanum was similar to Az. zhuanum described from China but differed from the type strain in nucleus position, by the dominant number of apical plates, and by significant differences in rRNA gene sequences. Finally, two new non-toxigenic Azadinium species are described from the North East Atlantic: Azadinium galwayense sp. nov. and Azadinium perfusorium sp. nov. Azadinium galwayense differed from other Azadinium by a characteristic combination regarding presence and location of the ventral pore (vp; on the right side of the pore plate), of a pyrenoid (located in the episome), and by a pentagonal shape of the median anterior intercalary plate 2a, and lack of contact between plates 1´´ and 1a. Azadinium perfusorium shared the same vp position as Az. galwayense and differed by a characteristic combination of a pyrenoid located in the hyposome, a tetragonal shape of plate 2a, and a relatively large size of the two lateral anterior intercalary plates. Molecular phylogeny confirmed the distinctiveness of these two new species and their placement in Azadinium. The present findings significantly increased knowledge on the diversity of Azadinium species in the North East Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...