GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation – atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation — atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-17
    Description: Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the “arctic greening”) will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  Theoretical and Applied Climatology, 128 (3-4). pp. 709-718.
    Publication Date: 2018-12-17
    Description: Large-scale atmospheric patterns are examined on orbital timescales using a climate model which explicitly resolves the atmosphere–ocean–sea ice dynamics. It is shown that, in contrast to boreal summer where the climate mainly follows the local radiative forcing, the boreal winter climate is strongly determined by modulation of circulation modes linked to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) and the Northern/Southern Annular Modes. We find that during a positive phase of the AO/NAO the convection in the tropical Pacific is below normal. The related atmospheric circulation provides an atmospheric bridge for the precessional forcing inducing a non-uniform temperature anomalies with large amplitudes over the continents. We argue that this is important for mechanisms responsible for multi-millennial climate variability and glacial inception.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC). , ed. by Schulz, M. and Paul, A. Springer Briefs in Earth System Sciences . Springer, Berlin, pp. 37-42. ISBN 978-3-319-00692-5
    Publication Date: 2019-09-23
    Description: Environmental changes in the region connecting the Arctic Ocean and the northern North Atlantic were studied for the last 9,000 years (9 ka) by a combination of proxy-based paleoceanographic reconstructions as well as transient and time-slice simulations with climate models. Today, the area is perennially ice-covered in the west and ice-free in the east. Results show that sea-ice conditions were highly variable on short timescales in the last 9 ka. However, sea-ice proxies reveal an overall eastward movement of the sea-ice margin, in line with a decreasing influence of warm Atlantic Water advected to the Arctic Ocean. These cooling trends were rapidly reversed 100 years ago and replaced by the general warming in the Arctic. Model results show a consistently high freshwater input to the Arctic Ocean during the last 7 ka. The signal is robust against the Holocene cooling trend, however sensitive towards the warming trend of the last century. These results may play a role in the observed Arctic changes.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-14
    Description: The tectonic opening of the Fram Strait (FS) was critical to the water exchange between the Atlantic Ocean and the Arctic Ocean, and caused the transition from a restricted to a ventilated Arctic Ocean during early Miocene. If and how the water exchange between the Arctic Ocean and the North Atlantic influenced the global current system is still disputed. We apply a fully coupled atmosphere–ocean–sea-ice model to investigate stratification and ocean circulation in the Arctic Ocean in response to the opening of the FS during early-to-middle Miocene. Progressive widening of the FS gateway in our simulation causes a moderate warming, while salinity conditions in the Nordic Seas remain similar. On the contrary, with increasing FS width, Arctic temperatures remain unchanged and salinity changes appear to steadily become stronger. For a sill depth of ~ 1500 m, we achieve ventilation of the Arctic Ocean due to enhanced import of saline Atlantic water through an FS width of ~ 105 km. Moreover, at this width and depth, we detect a modern-like three-layer stratification in the Arctic Ocean. The exchange flow through FS is characterized by vertical separation of a low-salinity cold outflow from the Arctic Ocean confined to a thin upper layer, an intermediate saline inflow from the Atlantic Ocean below, and a cold bottom Arctic outflow. Using a significantly shallower and narrower FS during the early Miocene, our study suggests that the ventilation mechanisms and stratification in the Arctic Ocean are comparable to the present-day characteristics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-01
    Description: Over the last decade, our understanding of cli- mate sensitivity has improved considerably. The climate system shows variability on many timescales, is subject to non-stationary forcing and it is most likely out of equi- librium with the changes in the radiative forcing. Slow and fast feedbacks complicate the interpretation of geolog- ical records as feedback strengths vary over time. In the geological past, the forcing timescales were different than at present, suggesting that the response may have behaved differently. Do these insights constrain the climate sensitiv- ity relevant for the present day? In this paper, we review the progress made in theoretical understanding of climate sensitivity and on the estimation of climate sensitivity from proxy records. Particular focus lies on the background state dependence of feedback processes and on the impact of tipping points on the climate system. We suggest how to further use palaeo data to advance our understanding of the currently ongoing climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), SpringerBriefs in Earth System Sciences, Germany, Springer, 5 p., pp. 31-35, ISBN: 978-3-319-00693-2
    Publication Date: 2015-06-05
    Description: In an attempt to assess trends of Holocene sea-surface temperature (SST), two proxies have been compiled and analyzed in light of model simulations. The data reveal contrasting SST trends, depending upon the proxy used to derive Holocene SST history. To reconcile these mismatches between proxies in the estimated Holocene SST trends, it has been proposed that the Holocene evolution of orbitally-driven seasonality of the incoming radiation is the first-order driving mechanism of the observed SST trends. Such hypothesis has been further tested in numerical models of the Earth system with important implications for SST signals ultimately recorded by marine sediment cores. The analysis of model results and alkenone proxy data for the Holocene indicate a similar pattern in temperature change, but the simulated SST trends underestimate the proxy-based SST trends by a factor of two to five. SST trends based on Mg/Ca show no correspondence with model results. We explore whether the consideration of different growing seasons and depth habitats of the planktonic organisms used for temperature reconstruction could lead to a better agreement of model results with alkenone data on a regional scale. We found that invoking shifts in the living season and habitat depth can remove some of the model–data discrepancies in SST trends. Our results indicate that modeled and reconstructed temperature trends are to a large degree only qualitatively comparable, thus providing at present a challenge for the interpretation of proxy data as well as the model sensitivity to orbital forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Encyclopedia of Complexity and Systems Science, Encyclopedia of Complexity and Systems Science, Springer, pp. 1-30
    Publication Date: 2015-03-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Earth System Science: Bridging the Gaps between Disciplines Perspectives from a Multi-disciplinary Helmholtz Research School, Heidelbert, Springer, 138 p., pp. 57-64, ISBN: ISBN 978-3-642-32234
    Publication Date: 2019-08-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...