GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (4)
  • Instituto de Ciencias del Mar - CSIC  (3)
  • 1
    Publication Date: 2021-02-08
    Description: Ocean acidification—the decrease in seawater pH due to rising CO2 concentrations—has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2, but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2-stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-18
    Description: The reliable production of marine fish larvae is one of the major bottlenecks in aquaculture due to high mortalities mainly caused by infectious diseases. To evaluate if the compound poly-β-hydroxybutyrate (PHB) might be a suitable immunoprophylactic measure in fish larviculture, its capacity to improve immunity and performance in European sea bass (Dicentrarchus labrax) yolk-sac larvae was explored. PHB was applied from mouth opening onwards to stimulate the developing larval immune system at the earliest possible point in time. Larval survival, growth, microbiota composition, gene expression profiles and disease resistance were assessed. PHB administration improved larval survival and, furthermore, altered the larva-associated microbiota composition. The bacterial challenge test using pathogenic Vibrio anguillarum revealed that the larval disease resistance was not influenced by PHB. The expression profiles of 26 genes involved e.g. in the immune response showed that PHB affected the expression of the antimicrobial peptides ferritin (fer) and dicentracin (dic), however, the response to PHB was inconsistent and weaker than previously demonstrated for sea bass post-larvae. Hence, the present study highlights the need for more research focusing on the immunostimulation of different early developmental stages for gaining a more comprehensive picture and advancing a sustainable production of high quality fry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-08
    Description: The small pelagic sprat (Sprattus sprattus) is a key ecologic player in the Baltic Sea. However, there is long-term variability in recruitment which is thought to be influenced by fluctuations in abiotic and biotic conditions experienced during the early life stages. This study concentrates on the influence of different ambient salinities on sprat egg development, egg buoyancy and survival as well as early yolk sac larval morphometric traits. Egg buoyancy significantly decreased with increasing salinity experienced during fertilization and/or incubation experiments. Field egg buoyancy measurements in 2007 and 2008 exhibited annual and seasonal differences in specific gravity, potentially associated with changes in adult sprat vertical distribution. Neither egg development time nor the duration of the yolk sac phase differed among salinity treatments. At eye pigmentation, larval standard length exhibited high variance among individuals but did not differ among treatments. The largest ecological impact of salinity experienced during spawning was the modification the buoyancy of eggs and yolk sac larvae, which determines their vertical habitat in the Baltic Sea. There are strong thermo- and oxyclines in the Baltic Sea, and thus salinity can indirectly impact
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Ocean acidification (OA), a direct consequence of increasing atmospheric CO2 concentration dissolving in ocean waters, is impacting many fish species. Little is known about the molecular mechanisms underlying the observed physiological impacts in fish. We used RNAseq to characterize the transcriptome of 3 different larval stages of Atlantic cod (Gadus morhua) exposed to simulated OA at levels (1179 µatm CO2) representing end-of-century predictions compared to controls (503 µatm CO2), which were shown to induce tissue damage and elevated mortality in G. morhua. Only few genes were differentially expressed in 6 and 13 days-post-hatching (dph) (3 and 16 genes, respectively), during a period when maximal mortality as a response to elevated pCO2 occurred. At 36 dph, 1413 genes were differentially expressed, most likely caused by developmental asynchrony between the treatment groups, with individuals under OA growing faster. A target gene analysis revealed only few genes of the universal and well-defined cellular stress response to be differentially expressed. We thus suggest that predicted ocean acidification levels constitute a “stealth stress” for early Atlantic cod larvae, with a rapid breakdown of cellular homeostasis leading to organismal death that was missed even with an 8-fold replication implemented in this study.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Instituto de Ciencias del Mar - CSIC
    In:  Scientia Marina, 73 (S1). pp. 159-170.
    Publication Date: 2018-01-22
    Description: Multiple biochemical measurements were evaluated as an indirect measure of juvenile fish growth rate. Juvenile two-spotted gobies, Gobiusculus flavescens (Fabricius), caught in the Kiel Bight, were incubated in a temperature gradient table at 7 different temperatures ranging from 9 to 22.7°C for up to 28 days and sampled weekly. RNA/DNA ratios (RNA/DNA), protein and lipid amounts were measured in whole fish homogenates and compared with calculated weight-based growth rates of the individuals. RNA/DNA values were not significantly correlated with weight-specific growth rates. Lipid- and protein-based growth rates, on the other hand, were highly correlated with weight-specific growth (R2 of 0.4-0.5) and lipid-based growth rate explained 45.8% variability of weight-based growth in a linear growth model. Weight-based growth rates showed a dome-shaped relationship to temperature with a maximum around 16°C, a trend mirrored in lipid-based growth rates. The results indicate a stage-dependent shift in energy storage and metabolism with a decoupling of RNA/DNA as an index of weight-based growth rate as the juvenile gobies mature and lipids become the main determinant of weight-based growth in these fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-08
    Description: Brazilian sardine, the most important resource along the southeastern Brazilian coast, presented great variations and declines in its stocks. The main factors contributing to this are: oceanographic structure changes; recruitment failures; excessive catches of juveniles and increase in fishery effort. In spite of this, no alterations in the density-dependent parameters were detected. Consequently, methods analysing the condition of the larvae coupled with methods determining growth using sagittae otolith increment width were applied to evaluate growth under experimental conditions. The results of the readings on the sagittae were compared with the age of the laboratory-reared sardine larvae and confirmed that increments are formed on a daily basis. Under poor feeding conditions, sardine larvae showed a low growth expressed by dry weight, RNA/DNA ratio and tryptic enzyme activity and by the narrow and low contrast increments in the otoliths. The results of the biochemical indices showed an unexpected decline in the feeding group coupled with a decrease in width of increment numbers 8 and 10. Other factors than food availability were affecting the condition of the larvae and might be indicative of physiological processes and ontogenetic changes occurring in sardine larvae.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...