GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 370 (1994), S. 326-327 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE El Nino event of 1982-83, the strongest of the century, had dramatic effects on the circulation of the tropical Pacific Ocean1, the marine ecology of the eastern equatorial Pacific2'3 and patterns of weather variability around the globe4. Its oceanic effects also penetrated to higher latitudes ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Subtropical western boundary currents are warm, fast-flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake1, 2, 3, 4. The possibility that these highly energetic currents might change under greenhouse-gas forcing has raised significant concerns5, 6, 7, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce the ability of the oceans to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Originating in the equatorial Pacific, the El Niño–Southern Oscillation (ENSO) has highly consequential global impacts, motivating the need to understand its responses to anthropogenic warming. In this Review, we synthesize advances in observed and projected changes of multiple aspects of ENSO, including the processes behind such changes. As in previous syntheses, there is an inter-model consensus of an increase in future ENSO rainfall variability. Now, however, it is apparent that models that best capture key ENSO dynamics also tend to project an increase in future ENSO sea surface temperature variability and, thereby, ENSO magnitude under greenhouse warming, as well as an eastward shift and intensification of ENSO-related atmospheric teleconnections — the Pacific–North American and Pacific–South American patterns. Such projected changes are consistent with palaeoclimate evidence of stronger ENSO variability since the 1950s compared with past centuries. The increase in ENSO variability, though underpinned by increased equatorial Pacific upper-ocean stratification, is strongly influenced by internal variability, raising issues about its quantifiability and detectability. Yet, ongoing coordinated community efforts and computational advances are enabling long-simulation, large-ensemble experiments and high-resolution modelling, offering encouraging prospects for alleviating model biases, incorporating fundamental dynamical processes and reducing uncertainties in projections. Key points Under anthropogenic warming, the majority of climate models project faster background warming in the eastern equatorial Pacific compared with the west. The observed equatorial Pacific surface warming pattern since 1980, though opposite to the projected faster warming in the equatorial eastern Pacific, is within the inter-model range in terms of sea surface temperature (SST) gradients and is subject to influence from internal variability. El Niño–Southern Oscillation (ENSO) rainfall responses in the equatorial Pacific are projected to intensify and shift eastward, leading to an eastward intensification of extratropical teleconnections. ENSO SST variability and extreme ENSO events are projected to increase under greenhouse warming, with a stronger inter-model consensus in CMIP6 compared with CMIP5. However, the time of emergence for ENSO SST variability is later than that for ENSO rainfall variability, opposite to that for mean SST versus mean rainfall. Future ENSO change is likely influenced by past variability, such that quantification of future ENSO in the only realization of the real world is challenging. Although there is no definitive relationship of ENSO variability with the mean zonal SST gradient or seasonal cycle, palaeoclimate records suggest a causal connection between vertical temperature stratification and ENSO strength, and a greater ENSO strength since the 1950s than in past centuries, supporting an emerging increase in ENSO variability under greenhouse warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-19
    Description: El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño–Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-23
    Description: Overview The Indian Ocean remains one of the most poorly sampled and overlooked regions of the world ocean. Today, more than 25% of the world’s population lives in the Indian Ocean region and the population of most Indian Ocean rim nations is increasing rapidly. These increases in population are giving rise to mul- tiple stressors in both coastal and open ocean environments. Combined with warming and acidification due to global climate change, these regional stressors are resulting in loss of biodi- versity in the Indian Ocean and also changes in the phenology and biogeography of many spe- cies. These pressures have given rise to an urgent need to understand and predict changes in the Indian Ocean, but the measurements that are needed to do this are still lacking. In response, SCOR, IOC, and IOGOOS have stimulated a second International Indian Ocean Expedition (IIOE-2). An international Science Plan and an Implementation Strategy for IIOE-2 have been developed, the formulation of national plans is well underway in several countries, and new research initiatives are being motivated. An Early-Career Scientist Network for Indian Ocean Research has self-organized to support the Expedition. The success of IIOE-2 will be gauged not just by how much it advances our understanding of the complex and dynamic Indian Ocean system, but also by how it con- tributes to sustainable development of marine resources, environmental stewardship, ocean and climate forecasting, and training of the next generation of ocean scientists. We encourage ASLO members to get involved.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...