GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-12
    Description: The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.
    Description: Published
    Description: id 905
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Etna volcano ; satellite monitoring ; remote sensing ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-01
    Description: In this body of work, we showcase a historic virtual geotrail on the eastern flank of the iconic Mt. Etna volcano (Italy), along a series of outstanding geological sites and features subsequent to an important eruption that took place in 1928. A geohistoric account of such a major eruption, is of great interest, since it is the only event since 1669 to have caused the destruction of a town (Mascali) in the Etna region. Volcanologists, educators, the lay public, tourists and volcano explorers can now access a series of “virtual geostops” belonging to this virtual geotrail, such that “visitors” can virtually fly above these sites by scanning a QR code on the printed or electronic version of the present manuscript, as well as on the poster provided as additional material for this manuscript. The virtual geostops that comprise the virtual geotrail were developed using the structure-frommotion (SfM) photogrammetry technique from images captured by using unmanned aerial vehicles (UAVs). The main result of our work is the virtual geotrail, subdivided in two parts and composed of eight geostops, each showing outstanding examples of geological features resulting from volcanic phenomena that took place also during 1979. Our approach is designed to support classical field trips, and it can undoubtedly become complementary to traditional field teaching in earth sciences, both now and in the future.
    Description: Published
    Description: 377
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: geotrail ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-01
    Description: In the original article [1], there were some mistakes in Figures 4 and 8, and Sections ‘Abstract’, ‘Discussion’, and ‘Conclusions’. The correct contents appears below. The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.
    Description: Published
    Description: 2746
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: solid-earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-14
    Description: The RST (Robust Satellite Techniques) approach is a multi-temporal scheme of satellite data analysis widely used to investigate and monitor thermal volcanic activity from space through high temporal resolution data from sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In this work, we present the results of the preliminary RST algorithm implementation to thermal infrared (TIR) data, at 90 m spatial resolution, from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Results achieved under the Google Earth Engine (GEE) environment, by analyzing 20 years of satellite observations over three active volcanoes (i.e., Etna, Shishaldin and Shinmoedake) located in different geographic areas, show that the RST-based system, hereafter named RASTer, detected a higher (around 25% more) number of thermal anomalies than the well-established ASTER Volcano Archive (AVA). Despite the availability of a less populated dataset than other sensors, the RST implementation on ASTER data guarantees an efficient identification and mapping of volcanic thermal features even of a low intensity level. To improve the temporal continuity of the active volcanoes monitoring, the possibility of exploiting RASTer is here addressed, in the perspective of an operational multi-satellite observing system. The latter could include mid-high spatial resolution satellite data (e.g., Sentinel-2/MSI, Landsat-8/OLI), as well as those at higher-temporal (lower-spatial) resolution (e.g., EOS/MODIS, Suomi-NPP/VIIRS, Sentinel-3/SLSTR), for which RASTer could provide useful algorithm’s validation and training dataset.
    Description: Published
    Description: 4201
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-14
    Description: On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and Infrared Imager (SEVIRI), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most powerful, with values of radiative power estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 1st and 3rd paroxysm (18 and 28 February) generated the largest thermal anomaly at Mt. Etna after June 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions.
    Description: Published
    Description: 3074
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-09
    Description: We present a new automatic procedure for updating digital topographic data from multi-source satellite imagery, which consists in the production of Digital Surface Models (DSMs) from high resolution optical satellite images, followed by a context-aware fusion that exploits the complementary characteristics of the multi-source DSMs. The fused DSM minimizes blunders and artifacts due to occlusions (e.g., the presence of clouds, snow or ash plumes) in the source images, resulting in improved accuracy and quality versus those that are not merged. The procedure has been tested to produce the 2021 digital topography of Mt Etna, whose summit area is constantly changing and shows the new peak of 3347 m on the north rim of the South East Crater. We also employ the 2021 DSM to measure the volcanic deposits emplaced in the last five years, finding about 120 million cubic meters, with a yearly average volume of about 24 million cubic meters in agreement with the large eruptive rates registered at Mt Etna since the nineteen seventies. The flexibility and modularity of the presented procedure make it easily exportable to other environmental contexts, allowing for a fast and frequent reconstruction of topographic surfaces even in extreme environments.
    Description: Published
    Description: 198
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...