GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • INT PHYCOLOGICAL SOC  (3)
  • WILEY-BLACKWELL PUBLISHING  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2021-02-01
    Description: The gonyaulacean family Protoceratiaceae is characterised by five precingular plates. It currently encompasses the type genus Ceratocorys and the fossil genus Atopodinium. Fourteen strains of Ceratocorys, Pentaplacodinium, and Protoceratium were established from Malaysian and Hawaiian waters, and their morphologies were examined using light and scanning electron microscopy. Two new species, Ceratocorys malayensis sp. nov. and Pentaplacodinium usupianum sp. nov., were described from Malaysian waters. They share a Kofoidean plate formula of Po, Pt, 3?, 1a, 6??, 6C, 6S, 5???, 1p, 1????. Ceratocorys malayensis has a short first apical plate (1?) with no direct contact with the anterior sulcal plate (Sa) whereas Pentaplacodinium usupianum had a parallelogram-shaped 1? plate which often contacted the Sa plate. The genera Ceratocorys and Pentaplacodinium were emended accordingly to incorporate species bearing five or six precingular plates. The Protoceratium strain from Hawaii was morphologically similar to P. reticulatum, but differed in the lack of a ventral pore in plate 1? and slight or lack of contact between plates 1? and Sa, and is here designated as P. cf. reticulatum. The maximum-likelihood and Bayesian inference analyses based on SSU, LSU and ITS ribosomal DNA sequences revealed that these three genera are monophyletic and form a well-resolved group. Our results support Protoceratium and Pentaplacodinium as members of the family Protoceratiaceae, characterised by the presence of one anterior intercalary plate. Seven strains of Protoceratium cf. reticulatum, Ceratocorys malayensis and Pentaplacodinium usupianum were examined for yessotoxin production by LC-MS/MS but none produced a detectable amount of toxin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INT PHYCOLOGICAL SOC
    In:  EPIC3Phycologia, INT PHYCOLOGICAL SOC, 52(6), pp. 625-636, ISSN: 0031-8884
    Publication Date: 2014-04-17
    Description: The dinoflagellate genus Azadinium includes species with a plate formula of po, cp, X, 4´, 3a, 6´´, 6C, 5S, 6´´´, 2´´´´ and is part of the family Amphidomataceae with an uncertain order affiliation. Among six species, at least two produce azaspiracids (AZAs), a group of lipophilic toxins that accumulate in shellfish and can cause human health problems. Diversity within the genus might be underestimated at present due to its small size. In the present study, we searched for Azadinium by incubating freshly collected sediments from the Yellow Sea off China and succeeded in detecting a new species, here described as Azadinium dalianense sp. nov. It shared identical hypothecal, cingular and sulcal plates with the other Azadinium species, but it was unique in having only three apical and two anterior intercalary plates. Up to two stalked pyrenoids were present but their location in the cell varied. Phylogenetic analyses based on concatenated smallsubunit, partial large-subunit, and internal transcribed spacer sequences revealed that A. dalianense was nested within Azadinium and formed a strongly supported clade with A. poporum. Liquid chromatography–mass spectrometry analyses did not detect any known AZAs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-23
    Description: Azaspiracids (AZA) are lipophilic marine biotoxins associated with shellfish poisoning which are produced by some species of Amphidomataceae. Diversity and global biogeography of this family are still poorly known. In summer 2017 plankton samples were collected from the central Labrador Sea and western Greenland coast from 64° N (Gothaab Fjord) to 75° N for the presence of Amphidomataceae and AZA. In the central Labrador Sea, light microscopy revealed small Azadinium-like cells (9200 cells l−1). Clonal strains established from plankton samples and scanning electron microscopy of fixed plankton samples revealed at least eight species of Amphidomataceae: Azadinium obesum, Az. trinitatum, Az. dexteroporum, Az. spinosum, Az. polongum, Amphidoma languida, Azadinium spec., and a new species described here as Azadinium perforatum sp. nov. The new species differed from other Azadinium species by the presence of thecal pores on the pore plate. All samples, including cultured strains, filtered seawater samples, and solid phase adsorption toxin tracking (SPATT) samplers deployed during the expedition in a continuous water-sampling system (FerryBox), were negative for AZA. DNA samples and PCR assays were positive for Amphidomataceae from most stations, whereas species-specific assays for three toxigenic species were rarely positive (two stations for Az. poporum, one station for Am. languida). The results highlight the presence of Amphidomataceae in the area but the lack of toxins and low abundance of toxigenic species currently indicate a low risk of toxic Amphidomataceae blooms in Arctic coastal waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-22
    Description: Shellfish contamination with azaspiracids (AZA), which are lipophilic marine biotoxins produced by marine dinoflagellates, is a major and recurrent problem for the Irish shellfish industry. AZA are produced by certain species of Amphidomataceae, but the species diversity of this group of microalgae in Irish waters is poorly known. Here we present a morphological and molecular characterization of multiple new strains of non-toxigenic Azadinium isolated on an oceanographic survey in 2018. A lack of AZA production for all strains presented here was demonstrated by LC-MS/ MS analysis. One strain of Azadinium caudatum var. margalefii (first strain for the area) confirmed nontoxigenicity of Atlantic populations of this species. One strain designated as Azadinium cf. zhuanum was similar to Az. zhuanum described from China but differed from the type strain in nucleus position, by the dominant number of apical plates, and by significant differences in rRNA gene sequences. Finally, two new non-toxigenic Azadinium species are described from the North East Atlantic: Azadinium galwayense sp. nov. and Azadinium perfusorium sp. nov. Azadinium galwayense differed from other Azadinium by a characteristic combination regarding presence and location of the ventral pore (vp; on the right side of the pore plate), of a pyrenoid (located in the episome), and by a pentagonal shape of the median anterior intercalary plate 2a, and lack of contact between plates 1´´ and 1a. Azadinium perfusorium shared the same vp position as Az. galwayense and differed by a characteristic combination of a pyrenoid located in the hyposome, a tetragonal shape of plate 2a, and a relatively large size of the two lateral anterior intercalary plates. Molecular phylogeny confirmed the distinctiveness of these two new species and their placement in Azadinium. The present findings significantly increased knowledge on the diversity of Azadinium species in the North East Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...