GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2020-03-01
    Description: Thirteen isolates of Prorocentrum species were established from the coral reefs of Perhentian Islands Marine Park, Malaysia and underwent morphological observations and molecular characterization. Six species were found: P. caipirignum, P. concavum, P. cf. emarginatum, P. lima, P. mexicanum and a new morphotype, herein designated as P. malayense sp. nov. Prorocentrum malayense, a species closely related to P. leve, P. cf. foraminosum, P. sp. aff. foraminossum, and P. concavum (Clade A sensu Chomérat et al. 2018), is distinguished from its congeners as having larger thecal pore size and a more deeply excavated V-shaped periflagellar area. Platelet arrangement in the periflagellar area of P. malayense is unique, with the presence of platelet 1a and 1b, platelet 2 being the most anterior platelet, and a broad calabash-shaped platelet 3. The species exhibits consistent genetic sequence divergences for the nuclear-encoded large subunit ribosomal RNA gene (LSU rDNA) and the second internal transcribed spacer (ITS2). The phylogenetic inferences further confirmed that it represents an independent lineage, closely related to species in Clade A sensu Chomérat et al. Pairwise comparison of ITS2 transcripts with its closest relatives revealed the presence of compensatory base changes (CBCs). Toxicity analysis showed detectable levels of okadaic acid in P. lima (1.0–1.6 pg cell˗1) and P. caipirignum (3.1 pg cell˗1); this is the first report of toxigenic P. caipirignum in the Southeast Asian region. Other Prorocentrum species tested, including the new species, however, were below the detection limit.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-01
    Description: The gonyaulacean family Protoceratiaceae is characterised by five precingular plates. It currently encompasses the type genus Ceratocorys and the fossil genus Atopodinium. Fourteen strains of Ceratocorys, Pentaplacodinium, and Protoceratium were established from Malaysian and Hawaiian waters, and their morphologies were examined using light and scanning electron microscopy. Two new species, Ceratocorys malayensis sp. nov. and Pentaplacodinium usupianum sp. nov., were described from Malaysian waters. They share a Kofoidean plate formula of Po, Pt, 3?, 1a, 6??, 6C, 6S, 5???, 1p, 1????. Ceratocorys malayensis has a short first apical plate (1?) with no direct contact with the anterior sulcal plate (Sa) whereas Pentaplacodinium usupianum had a parallelogram-shaped 1? plate which often contacted the Sa plate. The genera Ceratocorys and Pentaplacodinium were emended accordingly to incorporate species bearing five or six precingular plates. The Protoceratium strain from Hawaii was morphologically similar to P. reticulatum, but differed in the lack of a ventral pore in plate 1? and slight or lack of contact between plates 1? and Sa, and is here designated as P. cf. reticulatum. The maximum-likelihood and Bayesian inference analyses based on SSU, LSU and ITS ribosomal DNA sequences revealed that these three genera are monophyletic and form a well-resolved group. Our results support Protoceratium and Pentaplacodinium as members of the family Protoceratiaceae, characterised by the presence of one anterior intercalary plate. Seven strains of Protoceratium cf. reticulatum, Ceratocorys malayensis and Pentaplacodinium usupianum were examined for yessotoxin production by LC-MS/MS but none produced a detectable amount of toxin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...