GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Elsevier  (31)
  • PANGAEA  (3)
  • IFM-Geomar, Kiel  (2)
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    Publikationsdatum: 2023-01-13
    Schlagwort(e): BIO-LUMINESZENZ; CTD; CTD/Rosette; CTD-RO; DEPTH, water; SO194_CTD-1; SO194/1; Sonne; Sound velocity in water; South Pacific Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 198 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-04-20
    Beschreibung: Multibeam bathymetry raw data was recorded in the North Pacific during cruise SO96/1 that took place between 1994-06-09 and 1994-06-27. The data was collected using the ship's own Atlas Hydrosweep DS echo sounder.
    Schlagwort(e): Binary Object; Binary Object (File Size); Binary Object (Media Type); Comment; DAM_Underway; DAM Underway Research Data; Data file recording distance; Data file recording duration; DATE/TIME; ELEVATION; Event label; File content; KODIAKSEIS; LATITUDE; LONGITUDE; Number of pings; Ship speed; SO96/1; SO96/1_0_Underway-1; Sonne; Start of data file, depth; Start of data file, heading; Start of data file recording, date/time; Start of data file recording, latitude; Start of data file recording, longitude; Stop of data file, depth; Stop of data file, heading; Stop of data file recording, date/time; Stop of data file recording, latitude; Stop of data file recording, longitude
    Materialart: Dataset
    Format: text/tab-separated-values, 493 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-04-20
    Beschreibung: We provide seismic refraction and wide-angle data from two profile shot across the marine fore-arc of Nicaragua, Central Maerica. Profiles NIC20 and NIC50 were obtained aboard the US R/V Maurice Ewing cruise EW00–05 in 2000. All profile run across the condinantal margin and provide in total 26 digital record sections.
    Schlagwort(e): 1992 Nicaragua tsunami earthquake; Binary Object; Binary Object (File Size); Event label; EW0005; EW0005_NIC20; EW0005_NIC50; EW0005_OBH01; EW0005_OBH02; EW0005_OBH03; EW0005_OBH04; EW0005_OBH05; EW0005_OBH06; EW0005_OBH07; EW0005_OBH08; EW0005_OBH09; EW0005_OBH10; EW0005_OBH11; EW0005_OBH12; EW0005_OBH13; EW0005_OBH15; EW0005_OBH16; EW0005_OBH17; EW0005_OBH19; EW0005_OBH20; EW0005_OBH21; EW0005_OBH22; EW0005_OBH23; EW0005_OBH24; EW0005_OBH25; EW0005_OBH26; EW0005_OBH27; EW0005_OBH28; File content; Latitude of event; Longitude of event; Marine Fore-arc; Maurice Ewing; North Pacific Ocean; OBH; Ocean bottom hydrophone; SEIS; Seismic; seismic refraction; Seismic structure; Seismic tomography
    Materialart: Dataset
    Format: text/tab-separated-values, 30 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    IFM-Geomar, Kiel
    Publikationsdatum: 2021-03-29
    Beschreibung: report
    Schlagwort(e): 551.4 ; 551.22 ; 550
    Sprache: Englisch
    Materialart: article , publishedVersion
    Format: 193 S.
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    IFM-Geomar, Kiel
    Publikationsdatum: 2021-03-29
    Beschreibung: report
    Schlagwort(e): 551.4 ; 551.22 ; 550 ; UKD 100 ; TSZ 200 ; TSJ 200 ; TOH 300 ; TOH 100 ; TOH 200 ; TQC 600 ; Expeditionsberichte {Regionale Ozeanologie, Indischer Ozean} ; Indischer Ozean {Geophysik} ; Südostasien {Geophysik} ; Seismische Wellen {Geophysik} ; Seismometrie {Geophysik} ; Seismische Vorhersagen {Geophysik} ; Tiefseeseismik {Geophysik}
    Sprache: Englisch
    Materialart: article , publishedVersion
    Format: 212 S.
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Tectonophysics, 176 (1-2). pp. 25-41.
    Publikationsdatum: 2018-01-17
    Beschreibung: A seismic refraction profile across Langeland (Denmark) obtained from land stations recording airgun shots allowed to resolve upper crustal velocities to a depth of 8 km. The profile traverses the proposed Caledonian Deformation Front and the Ringkoebing-Fyn High. The Ringkoebing-Fyn High is about 10 km wide and the top basement lies less than 2 km below the surface. Basement velocities as high as 6.4 km/s, at depths between 6 and 8 km, can be best explained by compositional changes between adjoining basement units to the north and south. South of the Ringkoebing-Fyn High another high velocity basement unit is encountered and most probably represents a basement affected by the Caledonian orogeny. Along this profile on Langeland the positions of the Caledonian Deformation Front and the northern limit of the Zechstein deposits coincide.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Tectonophysics, 173 (1-4). pp. 83-93.
    Publikationsdatum: 2019-05-08
    Beschreibung: A deep Seismic reflection profile collected by DEKORP and BELCORP in the western Rhenish Massif was supplemented by wide-angle measurements. Signals from a vibrator source were successfully recorded to a distance of 60 km. A passive recording array was operated that recorded all shots along the profile. The wide-angle and near-vertical data were used to construct a velocity model for the profile. Most of the wide-angle reflections coincide with strong near-vertical reflections or bands of high reflectivity. The North Variscan Deformation Front, seen as a prominent shallow reflection on many profiles in this region, separates an upper crust with rather nigh velocities from a layer with lower velocities underneath. At a depth of 20–22 km a thin (2–3 km thick) layer of high velocities is found. The Moho is not reflective either in the near-vertical or in the wide-angle data, suggesting the presence of a thick crust-mantle transition zone.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-02-06
    Beschreibung: Highlights • The Lofoten/Vesterålen margin has less Early Cenozoic lava flows than believed. • Breakup of the L/V margin is delayed ∼1 m.y. from the Vøring Plateau to the south. • Late arrival of the Iceland Plume may explain delayed breakup and prolonged extension. The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5. km thick and ∼50. km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8. km), but is reduced to 6. km after 1. m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5. km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1. Ma, ∼1. m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-02-06
    Beschreibung: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-01-05
    Beschreibung: The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and refraction data were acquired in 2009; two dip-profiles which were extended by land stations, and one tie-profile parallel to the strike of the Møre–Trøndelag Fault Complex. The modeling of the wide-angle seismic data was performed with a combined inversion and forward modeling approach and validated with a 3D-density model. Modeling of the geophysical data indicates the presence of a 12–15 km thick accumulation of sedimentary rocks in the Møre Basin. The modeling of the strike profile located closer to land shows a decrease in crustal velocity from north to south. Near the coast we observe an intra-crustal reflector under the Trøndelag Platform, but not under the Slørebotn Sub-basin. Furthermore, two lower crustal high-velocity bodies are modeled, one located near the Møre Marginal High and one beneath the Slørebotn Sub-basin. While the outer lower crustal body is modeled with a density allowing an interpretation as magmatic underplating, the inner body has a density close to mantle density which might suggest an origin as an eclogized body, formed by metamorphosis of lower crustal gabbro during the Caledonian orogeny. The difference in velocity and extent of the lower crustal bodies seems to be controlled by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...