GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-22
    Description: Hydrographic surveys in three consecutive seasons in the Irminger Sea in 2001/2002 have revealed six physical regimes (zones) in which different surface mixing and spring re-stratification processes dominate. They are the South Irminger Current, the North Irminger Current, the Central Irminger Sea, the Polar-origin East Greenland Current, the Atlantic-origin East Greenland Current and the Reykjanes Ridge. The variations in restratification processes in particular have significant implications for the timing of shallow spring mixed layer development and therefore the timing and strength of the spring bloom. The relative roles of heat and freshwater in controlling re-stratification are examined for each hydrographic zone, and it is shown that the simplest concept of solar warming generating spring stratification is appropriate for the Irminger Current and the central Irminger Sea. However in the East Greenland Current and the Reykjanes Ridge zones, the springtime arrival of fresh or saline water at the surface dominates re-stratification and generates the earliest and strongest spring blooms of the region. In the cool fresh centre of the Irminger Sea the relatively low chlorophyll-a throughout the year cannot be wholly explained by stratification or nutrient concentrations. Details of the annual cycle in temperature, salinity, chlorophyll-a and nutrients are presented for each hydrographic zone
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-22
    Description: The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-22
    Description: Long-term observations of the deep ocean particle flux from three sites in the northeast Atlantic (33 degrees N, 22 degrees W; 47 degrees N, 20 degrees W; 54 degrees N, 20 degrees W) provide the basis for comparison and characterization of the biogeochemical provinces in terms of sedimentation pattern. Deep ocean particle flux data (2000 in) for fluxes of total mass and the flux composition are presented and compared to published sediment trap data from this area to consider regional-scale variations in the quantity and composition of settling material. The observations show that in the northeast Atlantic gradient of decreasing mass flux from North to South, exists consistent with known changes of biological productivity in surface waters. This gradient is associated with similar trends in opal and particulate organic carbon, whereas calcium carbonate shows trend in the opposite direction. The changes in the composition of the settling material found along the transect are indicating that the calcium carbonate flux is critical in removing organic matter from the upper ocean to the deeper sink. Its role declines from the subtropical ocean (60-80% of the particle flux) towards North (〈 40%) reflecting the decreasing importance of coccolithophorid/foraminiferal blooms for particle flux from the subtropical to the subpolar North Atlantic. In contrast, the role of biogenic silica (opal) in regard to the ballasting effect increases towards North. The northern sites have much higher percentage of biogenic silica than the sites in the South, because of the deep winter mixing and the seasonality of phytoplankton dominated by diatom blooms during spring and summer. The comparison of the seasonal pattern of particle flux with the seasonal pattern of surface chlorophyll a concentrations from SeaWiFS together with the similarity of the pattern observed in calcium carbonate and opal leads to the conclusion that the particle flux at two positions (33 degrees N, 22 degrees W; 47 degrees N, 20 degrees W) is fast and directly coupled to the phytoplankton dynamics in the overlying euphotic zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-22
    Description: Residual flow, barotropic tides and internal (baroclinic) tides interact in a number of ways with kilometer-scale seafloor topography such as abyssal hills and seamounts. Because of their likely impact on vertical mixing such interactions are potentially important for ocean circulation and the mechanisms and the geometry of these interactions are a matter of ongoing studies. In addition, very little is known about how these interactions are reflected in the sedimentary record. This multi-year study investigates if flow/topography interactions are reflected in distributional patterns of the natural short-lived (half-life: 24.1 d) particulate-matter tracer 234Th relative to its conservative (non-particle-reactive) and very long-lived parent nuclide 238U. The sampling sites were downstream of, or surrounded by, fields of short seamounts and, therefore, very likely to be influenced by nearby flow/topography interactions. At the sampling sites between about 200 and 1000 m above the seafloor recurrent ‘fossil’ disequilibria were detected. ‘Fossil’ disequilibria are defined by clearly detectable 234Th/238U disequilibria (total 234Th radioactivity 〈238U radioactivity, indicating a history of intense particulate 234Th scavenging and particulate-matter settling from the sampled parcel of water) and conspicuously low particle-associated 234Th activities. ‘Fossil’ disequilibria were centered at levels in the water column that correspond to the average height of the short seamounts near the sampling sites. This suggests the ‘fossil’ disequilibria are formed on the seamount slopes. Moreover, the magnitude of the ‘fossil’ disequilibria suggests that the slopes of the short seamounts in the study region are characterized by particularly vigorous fluid dynamics. Since ‘fossil’ disequilibria already occurred at ∼O(1–10 km) away from the seamount slopes it is likely that these vigorous fluid dynamics rapidly decay away from the slopes on scales of O(1–10 km). These conclusions are supported by the horizontal distribution and magnitude of the modeled total (barotropic+baroclinic) tidal current velocities of the predominating tidal M2 constituent: on (near-)critical seamount slopes baroclinic tides lead to localized [∼O(1 km)] increases of the overall tidal current velocity by a factor of ∼ 2, thereby pushing the total current velocity well above the threshold for sediment erosion. The results of this and a previous study [Turnewitsch, R., Reyss, J.-L., Chapman, D.C., Thomson, J., Lampitt, R.S., 2004. Evidence for a sedimentary fingerprint of an asymmetric flow field surrounding a short seamount. Earth and Planetary Science Letters 222(3–4), 1023–1036] show that kilometer-scale flow/topography interactions leave a marine geochemical imprint. This imprint may help develop new sediment proxies for the reconstruction of past changes of fluid dynamics in the deep sea, including residual and tidal flow. Sedimentary records controlled by kilometer-scale seafloor elevations are promising systems for the reconstruction of paleo-changes of deep-ocean fluid dynamics. For the sediment-based reconstruction of paleo-parameters other than physical oceanographic ones it may be advisable to avoid kilometer-scale topography altogether.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-22
    Description: Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are ∼ 3–4 μM OC (5–10% of dissolved OC) and ∼ 0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-30
    Description: Interannual variability in the spring bloom in the Irminger Basin, northern North Atlantic, is investigated using SeaWiFS-derived chlorophyll-a (chl-a) concentration and satellite or model-derived meteorological data. Variability in the timing and magnitude of the spring bloom in the basin is evaluated. A method for estimating a time series of Sverdrup's critical depth from satellite-derived data is introduced. Comparison with modelled mixed layer depth and chlorophyll concentration demonstrates that Sverdrup's critical depth model is valid for the Irminger Basin spring bloom. The dependence of the timing and magnitude of the spring bloom on winter pre-conditioning is investigated. We find that in the Irminger Basin the start of the spring bloom can be estimated from the preceding winter's mean wind speed and net heat flux. We also find that the maximum chl-a concentration during the bloom can be estimated from the frequency of winter storms. Increased storm activity results in a reduced bloom chlorophyll maximum by delaying the development of spring stratification, resulting in the bloom missing the ‘window of opportunity’ for optimum phytoplankton growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-21
    Description: Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002–2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 57 (8). pp. 988-998.
    Publication Date: 2015-10-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-22
    Description: Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C. finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (〉500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving G0 stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of G0 ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C. finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 48 (10). pp. 2199-2226.
    Publication Date: 2017-06-06
    Description: The intensive field observational phase of JGOFS in the North Atlantic Ocean has shown the importance of oceanic mesoscale variability on biogeochemical cycles and on the strength of the ocean biological pump. Mesoscale physical dynamics govern the major time/space scales of bulk biological variability (biomass, production and export). Mesoscale eddies seem to have a strong impact on the ecosystem structure and functioning, but observational evidence is rather limited. For the signature of the mesoscale features to exist in the ecosystem, the comparison of temporal scales of formation and evolution of mesoscale features and reaction of the ecosystem is a key factor. Biological patterns are driven by active changes in biological source and sink terms rather than simply by passive turbulent mixing. A first modelling assessment of the regional balances between horizontal and vertical eddy-induced nutrient supplies in the euphotic zone shows that the horizontal transport predominates over the vertical route in the subtropical gyre, whereas the reverse holds true for the other biogeochemical provinces of the North Atlantic. Presently, despite some difference in numbers, the net impact of modelled eddies yields an enhancement of the biological productivity in most provinces of the North Atlantic Ocean. Key issues remaining include variation on the mesoscale of subsurface particle and dissolved organic matter remineralization, improved knowledge of the ecological response to patterns of variability, synopticity in mesoscale surveys along with refining measures of biogeochemical time/space variability. Eventual success of assimilation of in situ and satellite data, still in its infancy in coupled physical/biogeochemical models, will be crucial to achieve JGOFS synthesis in answering which data are most informative, standing stocks or rates, and which ones are relevant. Depending on which end of the spectrum quantification of the effect of mesoscale features on production and community structure is required, complementary strategies are offered. Either one may choose to increase resolution of models up to the very fine mesoscale features scale (a few kms) for the high end, or to include a parametric representation of eddies for the low end.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...