GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). 2830-2846 .
    Publication Date: 2020-02-06
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: We present a new surface-atmospheric dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis (JRA-55), referred to here as JRA55-do. The JRA55-do dataset aims to replace the CORE interannual forcing version 2 (hereafter called the CORE dataset), which is currently used in the framework of the Coordinated Ocean-ice Reference Experiments (COREs) and the Ocean Model Intercomparison Project (OMIP). A major improvement in JRA55-do is the refined horizontal grid spacing (∼ 55 km) and temporal interval (3 hr). The data production method for JRA55-do essentially follows that of the CORE dataset, whereby the surface fields from an atmospheric reanalysis are adjusted relative to reference datasets. To improve the adjustment method, we use high-quality products derived from satellites and from several other atmospheric reanalysis projects, as well as feedback on the CORE dataset from the ocean modelling community. Notably, the surface air temperature and specific humidity are adjusted using multi-reanalysis ensemble means. In JRA55-do, the downwelling radiative fluxes and precipitation, which are affected by an ambiguous cloud parameterisation employed in the atmospheric model used for the reanalysis, are based on the reanalysis products. This approach represents a notable change from the CORE dataset, which imported independent observational products. Consequently, the JRA55-do dataset is more self-contained than the CORE dataset, and thus can be continually updated in near real-time. The JRA55-do dataset extends from 1958 to the present, with updates expected at least annually. This paper details the adjustments to the original JRA-55 fields, the scientific rationale for these adjustments, and the evaluation of JRA55-do. The adjustments successfully corrected the biases in the original JRA-55 fields. The globally averaged features are similar between the JRA55-do and CORE datasets, implying that JRA55-do can suitably replace the CORE dataset for use in driving global ocean–sea-ice models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (2). pp. 1471-1484.
    Publication Date: 2021-02-08
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) may play a role in sea surface temperature predictions on seasonal to decadal time scales. Therefore, AMOC seasonal cycles are a potential baseline for interpreting predictions. Here we present estimates for the seasonal cycle of transports of volume, temperature, and freshwater associated with the upper limb of the AMOC in the eastern subpolar North Atlantic on the Extended Ellett Line hydrographic section between Scotland and Iceland. Due to weather, ship‐based observations are primarily in summer. Recent glider observations during other seasons present an opportunity to investigate the seasonal variability in the upper layer of the AMOC. First, we document a new method to quality control and merge ship, float, and glider hydrographic observations. This method accounts for the different spatial sampling rates of the three platforms. The merged observations are used to compute seasonal cycles of volume, temperature, and freshwater transports in the Rockall Trough. These estimates are similar to the seasonal cycles in two eddy‐resolving ocean models. Volume transport appears to be the primary factor modulating other Rockall Trough transports. Finally, we show that the weakest transports occur in summer, consistent with seasonal changes in the regional‐scale wind stress curl. Although the seasonal cycle is weak compared to other variability in this region, the amplitude of the seasonal cycle in the Rockall Trough, roughly 0.5–1 Sv about a mean of 3.4 Sv, may account for up to 7–14% of the heat flux between Scotland and Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Highlights: • We focus on ACC and Southern Ocean MOC during 1958–2007 in 17 CORE-II forced models. • Most CORE-II simulations are close to eddy saturation. • Most CORE-II simulations are far from showing signs of eddy compensation. • Constant in time or space k results in poor representation of mesoscale eddy effects. • MOC has larger sensitivity than ACC transport even in eddy saturated state. Abstract: In the framework of the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II), we present an analysis of the representation of the Antarctic Circumpolar Current (ACC) and Southern Ocean meridional overturning circulation (MOC) in a suite of seventeen global ocean–sea ice models. We focus on the mean, variability and trends of both the ACC and MOC over the 1958–2007 period, and discuss their relationship with the surface forcing. We aim to quantify the degree of eddy saturation and eddy compensation in the models participating in CORE-II, and compare our results with available observations, previous fine-resolution numerical studies and theoretical constraints. Most models show weak ACC transport sensitivity to changes in forcing during the past five decades, and they can be considered to be in an eddy saturated regime. Larger contrasts arise when considering MOC trends, with a majority of models exhibiting significant strengthening of the MOC during the late 20th and early 21st century. Only a few models show a relatively small sensitivity to forcing changes, responding with an intensified eddy-induced circulation that provides some degree of eddy compensation, while still showing considerable decadal trends. Both ACC and MOC interannual variabilities are largely controlled by the Southern Annular Mode (SAM). Based on these results, models are clustered into two groups. Models with constant or two-dimensional (horizontal) specification of the eddy-induced advection coefficient κ show larger ocean interior decadal trends, larger ACC transport decadal trends and no eddy compensation in the MOC. Eddy-permitting models or models with a three-dimensional time varying κ show smaller changes in isopycnal slopes and associated ACC trends, and partial eddy compensation. As previously argued, a constant in time or space κ is responsible for a poor representation of mesoscale eddy effects and cannot properly simulate the sensitivity of the ACC and MOC to changing surface forcing. Evidence is given for a larger sensitivity of the MOC as compared to the ACC transport, even when approaching eddy saturation. Future process studies designed for disentangling the role of momentum and buoyancy forcing in driving the ACC and MOC are proposed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Highlights: • We compare the simulated Arctic Ocean in 15 global ocean–sea ice models. • There is a large spread in temperature bias in the Arctic Ocean between the models. • Warm bias models have a strong temperature anomaly of inflow of Atlantic Water. • Dense outflows formed on Arctic shelves are not captured accurately in the models. In this paper we compare the simulated Arctic Ocean in 15 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II). Most of these models are the ocean and sea-ice components of the coupled climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. We mainly focus on the hydrography of the Arctic interior, the state of Atlantic Water layer and heat and volume transports at the gateways of the Davis Strait, the Bering Strait, the Fram Strait and the Barents Sea Opening. We found that there is a large spread in temperature in the Arctic Ocean between the models, and generally large differences compared to the observed temperature at intermediate depths. Warm bias models have a strong temperature anomaly of inflow of the Atlantic Water entering the Arctic Ocean through the Fram Strait. Another process that is not represented accurately in the CORE-II models is the formation of cold and dense water, originating on the eastern shelves. In the cold bias models, excessive cold water forms in the Barents Sea and spreads into the Arctic Ocean through the St. Anna Through. There is a large spread in the simulated mean heat and volume transports through the Fram Strait and the Barents Sea Opening. The models agree more on the decadal variability, to a large degree dictated by the common atmospheric forcing. We conclude that the CORE-II model study helps us to understand the crucial biases in the Arctic Ocean. The current coarse resolution state-of-the-art ocean models need to be improved in accurate representation of the Atlantic Water inflow into the Arctic and density currents coming from the shelves.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Understanding the causes of the observed expansion of tropical ocean's oxygen minimum zones (OMZs) is hampered by large biases in the representation of oxygen distribution in climate models, pointing to incorrectly represented mechanisms. Here we assess the oxygen budget in a global biogeochemical circulation model, focusing on the Atlantic Ocean. While a coarse (0.5°) configuration displays the common bias of too large and too intense OMZs, the oxygen concentration in an eddying (0.1°) configuration is higher and closer to observations. This improvement is traced to a stronger oxygen supply by a more realistic representation of the equatorial and off-equatorial undercurrents, outweighing the concurrent increase in oxygen consumption associated with the stronger nutrient supply. The sensitivity of the eastern tropical Atlantic oxygen budget to the equatorial current intensity suggests that temporal changes in the eastward oxygen transport from the well-oxygenated western boundary region might partly explain variations in the OMZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-13
    Description: Highlights: • A joint analysis of deep current meter records in the western North Atlantic. • Intra-seasonal variability dominates the deep boundary current. • Topographic waves near 10d periods trapped over steep topography. • Basin centers are showing longer periods (50d) caused by the eddy field. • Observed variability characteristics compared to high resolution model simulation. Abstract The Deep Western Boundary Current (DWBC) along the western margin of the subpolar North Atlantic is an important component of the deep limb of the Meridional Overturning near its northern origins. A network of moored arrays from Denmark Strait to the tail of the Grand Banks has been installed for almost two decades to observe the boundary currents and transports of North Atlantic Deep Water as part of an internationally coordinated observatory for the Atlantic Meridional Overturning Circulation. The dominant variability in all of the moored velocity time series is in the week-to-month period range. While the temporal characteristics of this variability change only gradually between Denmark Strait and Flemish Cap, a broad band of longer term variability is present farther along the path of the DWBC at the Grand Banks and in the interior basins (Labrador and Irminger Seas). The vigorous intra-seasonal variability may well mask possible interannual to decadal variability that is typically an order of magnitude smaller than the high-frequency fluctuations. Here, the intra-seasonal variability is quantified at key positions along the DWBC path using both, observations and high resolution model data. The results are used to evaluate the model circulation, and in turn the model is used to relate the discrete measurements to the overall pattern of the subpolar circulation. Topographic waves are found to be trapped by the steep topography all around the western basins, the Labrador and Irminger Seas. In the Labrador Sea, the high intra-seasonal variability of the boundary current regime is separated by a region of extremely low variability in narrow recirculation cells from the basin interior. There, the variability is also on intra-seasonal timescales, but at much longer periods around 50 days.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (11). pp. 3972-3978.
    Publication Date: 2019-09-23
    Description: The abyssal warming around Antarctica is one of the most prominent multidecadal signals of change in the global ocean. Here we investigate its dynamical impacts on the Atlantic Meridional Overturning Circulation (AMOC) by performing a set of experiments with the ocean-sea ice model NEMO-LIM2 at 1/2 degrees horizontal resolution. The simulations suggest that the ongoing warming of Antarctic Bottom Water (AABW), already affecting much of the Southern Hemisphere with a rate of up to 0.05 degrees C decade(-1), has important implications for the large-scale meridional overturning circulation in the Atlantic Ocean. While the abyssal northward flow of AABW is weakening, we find the upper AMOC cell to progressively strengthen by 5-10% in response to deep density changes in the South Atlantic. The simulations suggest that the AABW-induced strengthening of the AMOC is already extending into the subtropical North Atlantic, implying that the process may counteract the projected decrease of the AMOC in the next decades.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-18
    Description: All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (9). pp. 6221-6237.
    Publication Date: 2019-09-23
    Description: Previous studies have shown that ENSO's anomalous equatorial winds, including the observed southward shift of zonal winds that occurs around the event peak, can be reconstructed with the first two Empirical Orthogonal Functions (EOFs) of equatorial region wind stresses. Using a high-resolution ocean general circulation model, we investigate the effect of these two EOFs on changes in warm water volume (WWV), interhemispheric mass transports, and Indonesian Throughflow (ITF). Wind stress anomalies associated with the first EOF produce changes in WWV that are dynamically consistent with the conceptual recharge oscillator paradigm. The ITF is found to heavily damp these WWV changes, reducing their variance by half. Wind stress anomalies associated with the second EOF, which depicts the southward wind shift, are responsible for WWV changes that are of comparable magnitude to those driven by the first mode. The southward wind shift is also responsible for the majority of the observed interhemispheric upper ocean mass exchanges. These winds transfer mass between the Northern and the Southern Hemisphere during El Niño events. Whilst water is transferred in the opposite direction during La Niña events, the magnitude of this exchange is roughly half of that seen during El Niño events. Thus, the discharging of WWV during El Niño events is meridionally asymmetric, while the WWV recharging during a La Niña event is largely symmetric. The inclusion of the southward wind shift is also shown to allow ENSO to exchange mass with much higher latitudes than that allowed by the first EOF alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...