GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Elsevier  (2)
  • 2015-2019  (2)
  • 2016  (2)
Publikationsart
Erscheinungszeitraum
  • 2015-2019  (2)
Jahr
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: Highlights • Polypropylene and biodegradable plastic bags were incubated in marine sediments. • Bacterial colonization was highest on biodegradable plastic bags. • None of the two bag types showed signs of degradation after 98 days. • Marine sediments probably represent a long-term sink for both types of litter. Abstract To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-23
    Beschreibung: Highlights • PetroMod is the 1st basin modelling software including methane hydrate simulation. • The Gas hydrate module includes physical, thermodynamic, and kinetic properties. • PetroMod simulates the evolution over time of the GHSZ. • PetroMod includes a kinetic for the organic matter degradation at low temperature. Abstract Within the German gas hydrate initiative SUGAR, a new 2-D/3-D module simulating the biogenic generation of methane from organic matter and the formation of gas hydrates has been developed and included in the petroleum systems modelling software package PetroMod®. Typically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components (oil and gas), their migration through geological strata, finally predicting oil and gas accumulations in suitable reservoir formations. We have extended PetroMod® to simulate gas hydrate accumulations in marine and permafrost environments by the implementation of algorithms describing (1) the physical, thermodynamic, and kinetic properties of gas hydrates; and (2) a kinetic continuum model for the microbially mediated, low temperature degradation of particulate organic carbon in sediments. Additionally, the temporal and spatial resolutions of PetroMod® were increased in order to simulate processes on time scales of hundreds of years and within decimetres of spatial extension. In order to validate the abilities of the new hydrate module, we present here results of a theoretical layer-cake model. The simulation runs predict the spatial distribution and evolution in time of the gas hydrate stability field, the generation and migration of thermogenic and biogenic methane gas, and its accumulation as gas hydrates.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...