GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Blackwell Publishing Ltd  (2)
  • Berlin, Heidelberg :Springer Berlin / Heidelberg,  (1)
Publikationsart
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Schlagwort(e): Plants -- Effect of heavy metals on. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book presents comprehensive and concise information on recent advances in the field of metal transport and how genetic diversity affects heavy metal transport in plants. It also covers phytoremediation.
    Materialart: Online-Ressource
    Seiten: 1 online resource (245 pages)
    Ausgabe: 1st ed.
    ISBN: 9783642384691
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Metalloenzymes Involved in the Metabolism of Reactive Oxygen Species and Heavy Metal Stress -- Abstract -- 1…Introduction -- 2…Catalase (CAT -- EC 1.11.1.6) -- 3…Superoxide Dismutase (SOD, EC 1.15.1.1) -- 4…Ascorbate Peroxidase (APX -- EC 1.11.1.11) -- 5…Xanthine Oxidoreductase -- 6…Conclusions -- Acknowledgments -- References -- 2 Metal Transporters in Plants -- Abstract -- 1…Introduction -- 2…Plants and Heavy Metals -- 2.1 Glutathione and Related Thiols -- 2.2 Metallothionein-like ProteinsMetallothionein-like Proteins and Metallothionein Expression -- 2.3 Induction of Thiols by Heavy Metals -- 3…Accumulation of Heavy Metals by Different Plant Species -- 3.1 Phytoremediation -- 3.2 Basic Mechanisms of Phytoremediation -- 3.3 HyperaccumulatorHyperaccumulator -- 3.3.1 Nickel -- 3.3.2 Zinc and Lead -- 3.3.3 Cadmium -- 3.3.4 Cobalt and Copper -- 3.3.5 Manganese -- 3.3.6 Selenium -- 4…Conclusion -- Acknowledgments -- References -- 3 Biochemistry of Metals/Metalloids Toward Remediation Process -- Abstract -- 1…IntroductionIntroduction -- 1.1 Plants as Accumulators of MetalsPlants as Accumulators of Metals -- 1.2 Hyperaccumulator PlantsHyperaccumulator Plants -- 1.3 High Biomass CropsHigh Biomass Crops -- 2…Factors Affecting Metal Uptake by PlantsFactors Affecting Metal Uptake by Plants -- 3…Mechanism of Glutathione-Mediated Metal Stress Tolerant in PlantsMechanism of Glutathione-Mediated Metal Stress Tolerant in Plants -- 4…Metals Uptake by PlantsMetals Uptake by Plants -- 5…Root-to-Shoot TranslocationRoot-to-Shoot Translocation -- 6…Detoxification/SequestrationDetoxification/Sequestration -- 7…Improvement for Enhanced PhytoextractionImprovement for Enhanced Phytoextraction -- 8…ConclusionsConclusions -- References -- 4 Role of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants -- Abstract. , 1…Introduction -- 2…Heavy Metal Uptake and Accumulation by Plants -- 3…Root System, Transporters and Heavy Metals -- 4…Sequestration of Metals into Vacuole -- 5…Role of Metal-Binding Ligands -- 6…Phytochelatins: The Heavy Metal Chelator -- 7…Phytochelatins Biosynthesis -- 8…Role of Phytochelatins in Heavy Metal Stress and Detoxification -- 9…Phytochelatins on Sulfur MetabolismSulfur Metabolism During Heavy Metal Stress -- 10…Concluding Remarks -- Acknowledgments -- References -- 5 Detoxification and Tolerance of Heavy Metal in Tobacco Plants -- Abstract -- 1…Introduction -- 2… Distribution Rule of HMs in Tobacco -- 3… Physiological Detoxification Mechanism of Tobacco to HMs Stress -- 3.1 Antioxidative Enzymes or Antioxidants -- 3.2 The Role of Trichomes and Crystals -- 4…The Special Genes Influencing Tobacco HMs Accumulation -- 5…How to Regulate Tobacco HMs Accumulation -- 5.1 Ensuring the Safety of Tobacco Leaf -- 5.2 Improving Soil Phytoremediation Efficacy -- 6…Conclusion -- Acknowledgments -- References -- 6 Heavy Metal Uptake and Tolerance of Charophytes -- Abstract -- 1…Introduction -- 2…Calcification and Nutrient Store -- 3…Carbonate-Bound Metals Fraction -- 4…Heavy Metal and Tolerance Capability of Charophytes -- 5…Metal Binding and Accumulation Mechanism in Charophytes -- 6…Conclusion -- References -- 7 Molecular Mechanisms Involved in Lead Uptake, Toxicity and Detoxification in Higher Plants -- Abstract -- 1…Introduction -- 2…Plant Absorption of Lead -- 3…Lead in the Root and Its Translocation to the Aerial Parts -- 3.1 Radial Diffusion in the Root -- 3.1.1 Apoplastic Pathway -- 3.1.2 Symplastic Pathway -- 3.2 Detoxification Mechanisms -- 3.2.1 Constitutive Mechanisms -- 3.2.2 Inducible Mechanisms -- General Mechanisms -- Phytochelatins -- Metallothioneins -- 3.3 Translocation to the Aerial Parts of the Plant -- 4…Lead Effects on Plants. , 4.1 Effects on the Cell Constituents -- 4.1.1 Effects on the Cell Envelopes -- 4.1.2 Effects on Proteins -- Effects on the Protein Pool -- Inactivation Mechanisms -- Activation Mechanisms -- 4.1.3 Antimitotic and Genotoxic Action of Lead -- 4.2 Water Status -- 4.3 Mineral Nutrition -- 4.4 Photosynthesis -- 4.5 Respiration -- 5…Lead and Oxidative Stress -- 5.1 Lead-Induced Oxidative Stress -- 5.2 Role of NADPH-Oxidase in Lead-Induced Toxicity -- 5.2.1 Activation of NADPH-Oxidase -- 5.2.2 Implication of NADPH-Oxidase in Lead-Induced Toxicity -- 5.2.3 Alternative Sources of ROS -- 6…Conclusion and Perspectives -- References -- 8 Interpopulation Responses to Metal Pollution: Metal Tolerance in Wetland Plants -- Abstract -- 1…Introduction: Metal Pollution -- 2…Plant Tolerance to Metals, General Considerations -- 3…Interpopulation Metal Tolerance Between Dryland and Wetland Plants, an Overview -- 4…Other Considerations in Relation with Environmental Factors and Population Metal Tolerance Responses in Wetland Ecosystems -- 5…Future Actions -- Acknowledgments -- References -- 9 Intraspecific Variation in Metal Tolerance of Plants -- Abstract -- 1…Introduction -- 2…Assessment of Variation in Metal Tolerance and Accumulation -- 2.1 In Vitro Screening Approach -- 3…Evaluation of Variability of Different Genotypes in Response to Exogenous Application of Heavy Metals -- 3.1 Toward Selenium (Se) BiofortificationBiofortification -- 4…Physiological, Biochemical, and Molecular Differences Related to Metal Tolerance -- 5…Conclusion -- References -- 10 Metallomics and Metabolomics of Plants Under Environmental Stress Caused by Metals -- Abstract -- 1…Introduction -- 2…Metal Toxicity in Plants -- 2.1 Mercury -- 2.2 Cadmium -- 2.3 ArsenicArsenic -- 2.4 Selenium -- 3…Metal InteractionsMetal Interactions in Plants -- 3.1 Selenium--Arsenic Effects on Plants. , 3.2 Sulfur and Selenium AntagonismAntagonism -- 4…MetallomicMetallomic and MetabolomicMetabolomic Techniques for Study of Plants Under Metal Stress -- 4.1 Collection of Plants -- 4.2 Metal Chemical SpeciationChemical Speciation and MetallomicsMetallomics in Plant -- 4.2.1 Sample Treatment in Metallomics -- 4.2.2 Metallomics Workflow -- 4.3 MetabolomicsMetallomics in Plant -- 4.3.1 Metabolomics Workflow for Plant Experiments -- 4.3.2 Sample Treatment for Metabolomic Studies -- 4.3.3 DataData ProcessingProcessingData Processing and Multivariate Analysis -- 5…Case Studies of Plant Under Metal Stress -- 5.1 Experiments ExposureExposure -- 5.2 Plants as BioindicatorsBioindicators in Environmental Monitoring of Metal Pollution -- 5.3 AlgaeAlgae as Functional FoodFunctional Food -- 6…Concluding Remarks -- References -- 11 Biogeochemical Cycling of Arsenic in Soil--Plant Continuum: Perspectives for Phytoremediation -- Abstract -- 1…Introduction -- 2…Bioavailability of Arsenic to Plants -- 3…Fate of Arsenic as Related to Rhizosphere pH -- 4…Fate of Arsenic as Related to Rhizosphere Redox Potential -- 5…Fate of Arsenic as Related to Soil Organic Matter -- 6…Role of Soil Microbes -- 7…Arsenic--Phosphorus Interaction -- 8…Arsenic Accumulation in Crops -- 9…Coordination Environment of Arsenic in Plant Tissue -- 10…Detoxification of Arsenic in Plants -- 11…Phytoremediation by Hyperaccumulating Plants -- 12…Novel Transgenic Strategies for Phytoremediation -- 13…Conclusions -- References -- 12 Evaluation of the Potential of Salt Marsh Plants for Metal Phytoremediation in Estuarine Environment -- Abstract -- 1…Introduction -- 2…Phytoremediation Potential of Halimione portulacoides -- 3…PhytoremediationPhytoremediation Potential of Juncus maritimus and Phragmites australis -- 4…Conclusions -- Acknowledgments -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 89 (1993), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The effect in vivo of salt stress on the activated oxygen metabolism of mitochondria, was studied in leaves from two NaCl-treated cultivars of Pisum sativum L. with different sensitivity to NaCl. In mitochondria from NaCl-sensitive plants, salinity brought about a significant decrease of Mn-SOD (EC 1. 15. 1. 1) Cu, Zn-SOD I (EC 1. 15. 1. 1) and fumarase (EC 4. 2. 1. 2) activities. Conversely, in salt-tolerant plants NaCl treatment produced an increase in the mitochondrial Mn-SOD activity and, to a lesser extent, in fumarase activity. In mitochondria from both salt-treated cultivars, the internal H2O2 concentration remained unchanged. The NADH- and succinate-dependent generation of O2.−radicals by submitochondrial particles and the lipid peroxidation of mitochondrial membranes, increased as a result of salt treatment, and these changes were higher in NaCl-sensitive than in NaCl-tolerant plants. Accordingly, the enhanced rates of superoxide production by mitochondria from salt-sensitive plants were concomitant with a strong decrease in the mitochondrial Mn-SOD activity, whereas NaCl-tolerant plants appear to have a protection mechanism against salt-induced increased O2.− production by means of the induction of the mitochondrial Mn-SOD activity. These results indicate that in the subcellular toxicity of NaCl in pea plants, at the level of mitochondria, an oxidative stress mechanism mediated by superoxide radicals is involved, and also imply a function for mitochondrial Mn-SOD in the molecular mechanisms of plant tolerance to NaCl.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The subcellular localization of superoxide dismutase (SOD; EC. 1.15.1.1) was studied in leaves of two ureide-producing leguminous plants (Phaseolus vulgaris L. cv. Contender and Vigna unguiculata [L.] Walp). In leaves of Vigna and Phaseolus, three superoxide dismutases were found, an Mn-SOD and two Cu, Zn-containing SODs (I and II). Chloroplasts, mitochondria, and peroxisomes were purified by differential and density-gradient centrifugation using either Percoll or sucrose gradients. The yields obtained in intact chloroplasts and peroxisomes from Vigna were considerably higher than those achieved for Phaseolus. Purified chloroplasts only contained the Cu, Zn-SOD II isozyme, but in mitochondria both Mn-SOD and Cu, Zn-SOD I isozymes were present. In purified peroxisomes no SOD activity was detected. The absence of SOD activity in leaf peroxisomes from Vigna contrasts with results reported for the amide-metabolizing legume Pisum sativum L. where the occurrence of Mn-SOD was demonstrated in leaf peroxisomes (del Río et al. 1983. Planta 158: 216–224; Sandalio et al. 1987. Plant Sci. 51: 1–8). This suggests that in leaf peroxisomes from Vigna plants the generation of O2- radicals under normal conditions probably does not take place.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...