GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2009BAMS2706.1.
    Description: A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.
    Description: Physical Oceanography program of NSF
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 88 (2007): 527-539, doi:10.1175/bams-88-4-527.
    Description: A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset. The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Positive linear trends appeared on a global scale, and were most significant over the tropical Indian and western Pacific warm pool and the boundary current regions. The increase in latent heat flux was in concert with the rise of sea surface temperature, suggesting a response of the atmosphere to oceanic forcing.
    Description: The authors gratefully acknowledge support from NOAA through the Cooperative Institute for Climate and Oceanic Research (CICOR) at the Woods Hole Oceanographic Institution (WHOI). Supporting NOAA grants are from the Office of Climate Observations (OCO) and Climate Change Data and Detection (CCDD).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1589–1610, doi:10.1175/JPO-D-12-0173.1.
    Description: This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE) and the Office of Naval Research Grant N00014-05-1-0139 as part of the CBLAST-LOW program.
    Description: 2014-02-01
    Keywords: Wind shear ; Wind stress ; Atmosphere-ocean interaction ; Fluxes ; Momentum ; Algorithms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2008BAMS2499.1.
    Description: The Vasco—Cirene program ex-plores how strong air—sea inter-actions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in Jan-uary—February 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.
    Description: CNES funded the Vasco part of the experiment; INSU funded the Cirene part. R/V Suroît is an Ifremer ship. The contributions from ODU, WHOI, and FOI (Sweden) are supported by the National Science Foundation under Grant Number 0525657. The participation of the University of Miami group was funded though NASA (NNG04HZ33C). PMEL participation was supported through NOAA’s Office of Climate Observation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 392–409, doi:10.1175/JCLI3620.1.
    Description: Data from the Eastern Pacific Investigation of Climate Studies (EPIC) mooring array are used to evaluate the annual cycle of surface cloud forcing in the far eastern Pacific stratus cloud deck/cold tongue/intertropical convergence zone complex. Data include downwelling surface solar and longwave radiation from 10 EPIC-enhanced Tropical Atmosphere Ocean (TAO) moorings from 8°S, 95°W to 12°N, 95°W, and the Woods Hole Improved Meteorology (IMET) mooring in the stratus cloud deck region at 20°S, 85°W. Surface cloud forcing is defined as the observed downwelling radiation at the surface minus the clear-sky value. Solar cloud forcing and longwave cloud forcing are anticorrelated at all latitudes from 12°N to 20°S: clouds tended to reduce the downward solar radiation and to a lesser extent increase the downward longwave radiation at the surface. The relative amount of solar radiation reduction and longwave increase depends upon cloud type and varies with latitude. A statistical relationship between solar and longwave surface cloud forcing is developed for rainy and dry periods and for the full record length in six latitudinal regions: northeast tropical warm pool, ITCZ, frontal zone, cold tongue, southern, and stratus deck regions. The buoy cloud forcing observations and empirical relations are compared with the International Satellite Cloud Climatology Project (ISCCP) radiative flux data (FD) dataset and are used as benchmarks to evaluate surface cloud forcing in the NCEP Reanalysis 2 (NCEP2) and 40-yr ECMWF Re-Analysis (ERA-40). ERA-40 and NCEP2 cloud forcing (both solar and longwave) showed large discrepancies with observations, being too large in the ITCZ and equatorial regions and too weak under the stratus deck at 20°S and north to the equator during the cool season from July to December. In particular the NCEP2 cloud forcing at the equator was nearly identical to the ITCZ region and thus had significantly larger solar cloud forcing and smaller longwave cloud forcing than observed. The net result of the solar and longwave cloud forcing deviations is that there is too little radiative warming in the ITCZ and southward to 8°S during the warm season and too much radiative warming under the stratus deck at 20°S and northward to the equator during the cold season.
    Description: This research was supported by grants from the NOAA Office of Global Programs, Pan American Climate Studies.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 6153–6169, doi:10.1175/JCLI3970.1.
    Description: The present study used a new net surface heat flux (Qnet) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Qnet controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (hMLD). The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Qnet. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Qnet. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Qnet confined in a relatively shallow (deep) hMLD. The seasonal evolution of SST variability is well predicted by simply relating the local Qnet with a variable hMLD. On the other hand, the influence of Qnet diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast. The study also showed that if the degree of consistency between the correlation relationships of Qnet, hMLD, and SST variability serves as a measure of the quality of the Qnet product, then the Qnet from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Qnet is least representative. It should be noted that the Qnet from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Qnet occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Qnet from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST. In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
    Description: This study is support by the NOAA CLIVAR Atlantic under Grant NA06GP0453 and NOAA Climate observations and Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Sea surface temperature ; Surface fluxes ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 29 (2012): 1363–1376, doi:10.1175/JTECH-D-12-00060.1.
    Description: The design of a surface mooring for deployment in the Gulf Stream in the Mid-Atlantic Bight is described. The authors' goals were to observe the surface meteorology; upper-ocean variability; and air–sea exchanges of heat, freshwater, and momentum in and near the Gulf Stream during two successive 1-yr deployments. Of particular interest was quantifying these air–sea fluxes during wintertime events that carry cold, dry air from the land over the Gulf Stream. Historical current data and information about the surface waves were used to guide the design of the surface mooring. The surface buoy provided the platform for both bulk meteorological sensors and a direct covariance flux system. Redundancy in the meteorological sensors proved to be a largely successful strategy to obtain complete time series. Oceanographic instrumentation was limited in size by considerations of drag; and two current meters, three temperature–salinity recorders, and 15 temperature recorders were deployed. Deployment from a single-screw vessel in the Gulf Stream required a controlled-drift stern first over the anchor sites. The first deployment lasted the planned full year. The second deployment ended after 3 months when the mooring was cut by unknown means at a depth of about 3000 m. The mooring was at times in the core of the Gulf Stream, and a peak surface current of over 2.7 m s−1 was observed. The 15-month records of surface meteorology and air–sea fluxes captured the seasonal variability as well as several cold-air outbreaks; the peak observed heat loss was in excess of 1400 W m−2.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE). The Vetlesen Foundation is also acknowledged for the early support of SB.
    Description: 2013-03-01
    Keywords: Buoy observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.
    Description: Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
    Description: S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.
    Description: 2018-08-26
    Keywords: Indian Ocean ; Baroclinic flows ; Potential vorticity ; Fronts ; Monsoons ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 26 (2009): 1867-1890, doi:10.1175/2009JTECHO667.1.
    Description: The accuracies of the meteorological sensors (air temperature, relative humidity, barometric pressure, near-surface temperature, longwave and shortwave radiation, and wind speed and direction) that compose the Improved Meteorological (IMET) system used on buoys at long-term ocean time series sites known as ocean reference stations (ORS) are analyzed to determine their absolute error characteristics. The predicted errors are compared to in situ measurement discrepancies and other observations (direct flux shipboard sensors) to confirm the predictions. The meteorological errors are then propagated through bulk flux formulas and the Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm to give predicted errors for the heat flux components, the freshwater flux, and the momentum flux. Absolute errors are presented for three frequency bands [instantaneous (1-min sampling), diurnal, and annual]. The absolute uncertainty in the annually averaged net heat flux is found to be 8 W m−2 for conditions similar to the current ORS deployments in the subtropics.
    Description: Support for the buoy deployments and the analysis from the NOAA Climate Observation Program is greatly appreciated (Grants NA17RJ1223 and NA17RJ1224).
    Keywords: Sensors ; Subtropics ; Surface observations ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 88 (2007): 341-356, doi:10.1175/bams-88-3-341.
    Description: The Office of Naval Research's Coupled Boundary Layers and Air–Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air–sea interface. CBLAST-LOW was designed to investigate these processes at the low-wind extreme where the processes are often driven or strongly modulated by buoyant forcing. The focus was on conditions ranging from negligible wind stress, where buoyant forcing dominates, up to wind speeds where wave breaking and Langmuir circulations play a significant role in the exchange processes. The field program provided observations from a suite of platforms deployed in the coastal ocean south of Martha's Vineyard. Highlights from the measurement campaigns include direct measurement of the momentum and heat fluxes on both sides of the air–sea interface using a specially constructed Air–Sea Interaction Tower (ASIT), and quantification of regional oceanic variability over scales of O (1–104 mm) using a mesoscale mooring array, aircraft-borne remote sensors, drifters, and ship surveys. To our knowledge, the former represents the first successful attempt to directly and simultaneously measure the heat and momentum exchange on both sides of the air–sea interface. The latter provided a 3D picture of the oceanic boundary layer during the month-long main experiment. These observations have been combined with numerical models and direct numerical and large-eddy simulations to investigate the processes that couple the atmosphere and ocean under these conditions. For example, the oceanic measurements have been used in the Regional Ocean Modeling System (ROMS) to investigate the 3D evolution of regional ocean thermal stratification. The ultimate goal of these investigations is to incorporate improved parameterizations of these processes in coupled models such as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to improve marine forecasts of wind, waves, and currents.
    Description: This work was supported by the Office of Naval Research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...