GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Buoy observations  (5)
  • American Meteorological Society  (5)
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 29 (2012): 1363–1376, doi:10.1175/JTECH-D-12-00060.1.
    Beschreibung: The design of a surface mooring for deployment in the Gulf Stream in the Mid-Atlantic Bight is described. The authors' goals were to observe the surface meteorology; upper-ocean variability; and air–sea exchanges of heat, freshwater, and momentum in and near the Gulf Stream during two successive 1-yr deployments. Of particular interest was quantifying these air–sea fluxes during wintertime events that carry cold, dry air from the land over the Gulf Stream. Historical current data and information about the surface waves were used to guide the design of the surface mooring. The surface buoy provided the platform for both bulk meteorological sensors and a direct covariance flux system. Redundancy in the meteorological sensors proved to be a largely successful strategy to obtain complete time series. Oceanographic instrumentation was limited in size by considerations of drag; and two current meters, three temperature–salinity recorders, and 15 temperature recorders were deployed. Deployment from a single-screw vessel in the Gulf Stream required a controlled-drift stern first over the anchor sites. The first deployment lasted the planned full year. The second deployment ended after 3 months when the mooring was cut by unknown means at a depth of about 3000 m. The mooring was at times in the core of the Gulf Stream, and a peak surface current of over 2.7 m s−1 was observed. The 15-month records of surface meteorology and air–sea fluxes captured the seasonal variability as well as several cold-air outbreaks; the peak observed heat loss was in excess of 1400 W m−2.
    Beschreibung: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE). The Vetlesen Foundation is also acknowledged for the early support of SB.
    Beschreibung: 2013-03-01
    Schlagwort(e): Buoy observations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 22 (2009): 5527–5540, doi:10.1175/2009JCLI2961.1.
    Beschreibung: A 5-yr climatology of the meteorology, including boundary layer cloudiness, for the southeast Pacific region is presented using observations from a buoy located at 20°S, 85°W. The sea surface temperature and surface air temperature exhibit a sinusoidal seasonal cycle that is negatively correlated with surface pressure. The relative humidity, wind speed, and wind direction show little seasonal variability. But the advection of cold and dry air from the southeast varies seasonally and is highly correlated with the latent heat flux variations. A simple model was used to estimate the monthly cloud fraction using the observed surface downwelling longwave radiative flux and surface meteorological parameters. The annual cycle of cloud fraction is highly correlated to that of S. A. Klein: lower-tropospheric stability parameter (0.87), latent heat flux (−0.59), and temperature and moisture advection (0.60). The derived cloud fraction compares poorly with the International Satellite Cloud Climatology Project (ISCCP)-derived low-cloud cover but compares well (0.86 correlation) with ISCCP low- plus middle-cloud cover. The monthly averaged diurnal variations in cloud fraction show marked seasonal variability in the amplitude and temporal structure. The mean annual cloud fraction is lower than the mean annual nighttime cloud fraction by about 9%. Annual and diurnal cycles of surface longwave and shortwave cloud radiative forcing were also estimated. The longwave cloud radiative forcing is about 45 W m−2 year-round, but, because of highly negative shortwave cloud radiative forcing, the net cloud radiative forcing is always negative with an annual mean of −50 W m−2.
    Beschreibung: This research was supported by the Climate Prediction Program for the Americas (CPPA) of NOAA’s Climate Program Office. The Stratus Ocean Reference Station at 20°S, 85°W is supported by NOAA’s Climate Observation Program.
    Schlagwort(e): Climatology ; Surface observations ; Surface fluxes ; Radiative forcing ; Cloud cover ; Pacific Ocean ; Buoy observations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-07-13
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(2), (2022): 271–282. https://doi.org/10.1175/jtech-d-21-0069.1.
    Beschreibung: The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.
    Beschreibung: KJJ and RV thank Ministry of Earth Sciences (MoES), Government of India, Secretary, MoES, and Director, NIOT, for the support and encouragement in carrying out the work under the National Monsoon Mission, Ocean Mixing and Monsoon (OMM) program. AT, JTF, and RAW thank Office of Naval Research Grants N00014-19-12410 and N00014-17-12880, United States, for funding and support. The OOS team at NIOT is acknowledged for their efforts in maintaining the OMNI buoy network in North Indian Ocean. We acknowledge Dr. B.W. Blomquist, University of Colorado, for his support in computing clear-sky radiation and Iury T. Simoes-Sousa, University of Massachusetts, Dartmouth, for the graphics. NCMRWF, MoES, Government of India, is acknowledged for NGFS reanalysis dataset, which is produced under the collaboration between NCMRWF, IITM, and IMD.
    Schlagwort(e): Algorithms ; Buoy observations ; In situ oceanic observations ; Instrumentation/sensors ; Quality assurance/control
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 39 (2013): 450–469, doi:10.1175/JTECH-D-12-00078.1.
    Beschreibung: A surface mooring was deployed in the Gulf Stream for 15 months to investigate the role of air–sea interaction in mode water formation and other processes. The accuracies of the near-surface meteorological and oceanographic measurements are investigated. In addition, the impacts of these measurement errors on the estimation and study of the air–sea fluxes in the Gulf Stream are discussed. Pre- and postdeployment calibrations together with in situ comparison between shipboard and moored sensors supported the identification of biases due to sensor drifts, sensor electronics, and calibration errors. A postdeployment field study was used to further investigate the performance of the wind sensors. The use of redundant sensor sets not only supported the filling of data gaps but also allowed an examination of the contribution of random errors. Air–sea fluxes were also analyzed and computed from both Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parameterization and using direct covariance measurements. The basic conclusion is that the surface buoy deployed in the Gulf Stream to support air–sea interaction research was successful, providing an improved 15-month record of surface meteorology, upper-ocean variability, and air–sea fluxes with known accuracies. At the same time, the coincident deployment of mean meteorological and turbulent flux sensors proved to be a successful strategy to certify the validity of the bulk formula fluxes over the midrange of wind speeds and to support further work to address the present shortcomings of the bulk formula methods at the low and high wind speeds.
    Beschreibung: The National Science Foundation (Grant OCE04-24536) funded this work, as part of the CLIVAR Mode Water Dynamics Experiment (CLIMODE). The Vetlesen Foundation is also acknowledged for the early support of S. Bigorre.
    Beschreibung: 2013-09-01
    Schlagwort(e): Atmosphere-ocean interaction ; Buoy observations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Schlundt, M., Farrar, J. T., Bigorre, S. P., Plueddemann, A. J., & Weller, R. A. (2020). Accuracy of wind observations from open-ocean buoys: correction for flow distortion. Journal of Atmospheric and Oceanic Technology, 37(4), 687-703, doi:10.1175/JTECH-D-19-0132.1.
    Beschreibung: The comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s−1. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
    Beschreibung: We gratefully acknowledge the help of three anonymous reviewers, whose input greatly improved the paper. In particular, one reviewer pointed out a mistake in our initial interpretation of scatterometer stability, which was corrected in the final manuscript. JTF and MS were supported by NASA Grant NNX14AM71G (International Ocean Vector Winds Science Team). The SPURS observations were supported by NASA (Grants NNX11AE84G, NNX15AG20G, and 80NSSC18K1494). The Stratus, NTAS, and WHOTS ocean reference stations (ORS) are long-term surface moorings deployed as part of the OceanSITES (http://www.oceansites.org) component of the Global Ocean Observing System, and are supported by NOAA’s Climate Program Office’s Ocean Observing and Monitoring Division, as are RAW, AJP, and SPB through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 with NOAA Climate Program Office (CPO) (FundRef No. 100007298). The technical staff of the UOP Group at WHOI and the crews of NOAA and UNOLS vessels have been essential to the successful long-term maintenance of the ORS.
    Schlagwort(e): Ocean ; Wind ; Buoy observations ; Remote sensing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...