GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (19)
  • 2000-2004  (31)
Document type
Keywords
Language
Years
Year
  • 1
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 204(2004), 1/2, Seite 145-159, 1872-6151
    In: volume:204
    In: year:2004
    In: number:1/2
    In: pages:145-159
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Erdgasgewinnung ; Offshore-Technik ; Gashydrate ; Methan
    Type of Medium: Book
    Pages: 52, [1] Bl. , Ill., graph. Darst.
    Language: German , English
    Note: Förderkennzeichen BMBF 03 G 0143 A/5. - Engl. Zsfassung u.d.T.: Properties and fabric of near-surface methane hydrates at Hydrate Ridge, Cascadia Margin , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als elektronische Ressource vorh
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Dissertation ; Kontinentalhang ; Barents See ; Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ( 101Seiten = 6MB)
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 179-210. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2020-04-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Increasing interest in the acquisition of biotic and abiotic resources from within the deep sea (e.g., fisheries, oil–gas extraction, and mining) urgently imposes the development of novel monitoring technologies, beyond the traditional vessel-assisted, time-consuming, high-cost sampling surveys. The implementation of permanent networks of seabed and water-column-cabled (fixed) and docked mobile platforms is presently enforced, to cooperatively measure biological features and environmental (physicochemical) parameters. Video and acoustic (i.e., optoacoustic) imaging are becoming central approaches for studying benthic fauna (e.g., quantifying species presence, behavior, and trophic interactions) in a remote, continuous, and prolonged fashion. Imaging is also being complemented by in situ environmental-DNA sequencing technologies, allowing the traceability of a wide range of organisms (including prokaryotes) beyond the reach of optoacoustic tools. Here, we describe the different fixed and mobile platforms of those benthic and pelagic monitoring networks, proposing at the same time an innovative roadmap for the automated computing of hierarchical ecological information on deep-sea ecosystems (i.e., from single species’ abundance and life traits to community composition, and overall biodiversity).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The anthropogenic impact of polymetallic nodule harvesting in the Clarion-Clipperton Fracture Zone is expected to strongly affect the benthic ecosystem. To predict the long-term, industrial-scale impact of nodule mining on the deep-sea environment and to improve the reliability of the sediment plume model, information about the specific characteristics of deep-sea particles is needed. Discharge simulations of mining-related fine-grained (median diameter ≈ 20 μm) sediment plumes at concentrations of 35–500 mg L–1 (dry weight) showed a propensity for rapid flocculation within 10 to 135 min, resulting in the formation of large aggregates up to 1100 μm in diameter. The results indicated that the discharge of elevated plume concentrations (500 mg L–1) under an increased shear rate (G ≥ 2.4 s–1) would result in improved efficiency of sediment flocculation. Furthermore, particle transport model results suggested that even under typical deep-sea flow conditions (G ≈ 0.1 s–1), rapid deposition of particles could be expected, which would restrict heavy sediment blanketing (several centimeters) to a smaller fall-out area near the source, unless subsequent flow events resuspended the sediments. Planning for in situ tests of these model projections is underway
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Future mining of polymetallic nodules in the Clarion Clipperton Zone (Northeastern Pacific) is expected to affect all benthic ecosystems. The diversity, distribution, and environmental functions of microorganisms inhabiting abyssal sediments are barely understood. To understand consequences of deep-sea mining, experimental in vitro systems needs to be established to test hypotheses on the environmental impact of mining. For this, 40 bacterial strains, belonging to proteobacteria, actinobacteria and firmicutes were isolated from deep-sea sediments and nodules sampled at depths of ≥ 4000 m. Phenotypic characterization revealed a strong inter-species and moderate intra-species variability. Determination of metal minimum inhibitory concentrations indicated the presence of acute manganese-resistant bacteria such as Rhodococcus erythropolis (228.9 mM), Loktanella cinnabarina (57.2 mM), and Dietzia maris (14.3 mM) that might be suitable systems for testing the effects of release of microbes from nodules and their interactions with sediment particles in plumes generated during mining. Comparative genomic analysis indicated the presence of manganese efflux systems relevant for future transcriptomics or proteomics approaches with environmental samples and might serve in paving the way to develop model systems including representative organisms which are currently not cultivable. Monitoring deep-sea mining activity at abyssal depth is a challenge that has to be tackled. We proposed the use of API strips as a fast on-board methodology for bacterial monitoring as an indicator for sediment plume dispersions within the water column.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 204 (1-2). pp. 145-159.
    Publication Date: 2017-08-02
    Description: A new optical instrument for the investigation of submarine fluid flows based on a ‘schlieren’ technique was developed and successfully deployed at cold seep sites. With this application it is possible to visualize the discharge and distribution of fluids in the ambient bottom water and to resolve microstructures and mixing processes at a scale of centimeters. The system is sensitive to small refractive index anomalies caused by temperature and salinity variations. Density anomalies of Δσt=0.049 are detectable evaluated by in-situ temperature variations of ΔT=0.1°C and salinity variations of ΔS=0.045 psu. In flume experiments the smallest detectable density variation was even lower with Δσt=0.023. The technique has been successfully applied in two different environments. First field experiments were performed to observe submarine groundwater discharge in Eckernförde Bay (western Baltic Sea) at shallow water depths. Subsequently, the ‘schlieren’ technique was successfully brought to a cold seep location at the Cascadia convergent margin (800 m water depth). The discharge of fluids was recorded in both field experiments which enabled a qualitative seep site identification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-09-11
    Description: Hydrodynamic behaviour and the transport pathways of microplastics within the ocean environment are not well known, rendering accurate predictive models for dispersal management of such pollutants difficult to establish. In the natural environment, aggregation between plastic microbeads and phytodetritus or suspended sediments in rivers and oceans further complicate the patterns of dispersal. In this laboratory study, the physical characteristics and hydrodynamic behaviour of a selection of common plastic microbeads, as used in exfoliation skincare cosmetic products, were investigated. Additionally, the potential for aggregation of these microbeads with phytodetritus and suspended sediments, as well as the subsequent sinking and resuspension behaviour of produced aggregates, were investigated with roller tanks, settling columns and erosion chamber. Physical characteristics of the plastic microbeads showed great heterogeneity, with various densities, sizes and shapes of plastic material being utilised in products designed for the same purpose. The majority of the plastics investigated were positively buoyant in both freshwater and seawater. Aggregation between plastic microbeads and phytoplankton was observed to be swift, with even extremely high concentrations of plastics being rapidly scavenged by suspended algal material. Following aggregation to sizes of 300 to 4400 μm diameter, some formerly buoyant plastics were observed to settle through the water column and enter the benthic boundary layer with settling velocities ranging between 32 and 831 m day–1. These aggregates could be resuspended in the laboratory under critical shear velocities of 0.67–1.33 cm s–1 (free stream velocities of 〉 10 cm s–1). This rapid aggregation and subsequent settling indicates a potentially important transport pathway for these waste products, a pathway that should be considered when modelling discharge and transport of plastic microbeads and determining the ecosystems that may be at risk from exposure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-20
    Description: Despite the technological advances of the last decades (e.g. ROVs, AUVs, cabled observatories), our knowledge of most deep-sea environments is still strongly limited by spatio-temporal sampling and observational capabilities. The novel Internet Operated Deep-Sea Crawler technology can provide high-frequency, multi-sensor data, during long-term deployments, 24/7 communication with researchers and broader spatial coverage (i.e. mobile platform) than fixed instrument installations. The crawler “Wally” is deployed at the Barkley Canyon methane hydrates site (NE Pacific, Canada; ~890 m depth) and connected to the Ocean Networks Canada NEPTUNE cabled observatory network (ONC; www.oceannetworks.ca). Here we present the environmental and biological datasets obtained from Wally instruments and cameras, during the first deployment phase (September 2010 to January 2015), as well as new features and preliminary results obtained since it was re-deployed (May 2016 – present). In addition to data provided by the standard payload of the crawler (i.e. ADCP, CTD, methane sensor, turbidity sensor and fluorometer), the hydrates community was video-monitored at different frequencies and timespans. Photomosaics were generated at two distinct locations, in order to map chemosynthetic bacterial mats and vesicomyid clam colonies covering the ~2-3 m high hydrate mounds, and document their temporal dynamics. The crawler followed the development of a deep-sea shell taphonomic experiment aiming to quantify biogenic carbon fluxes at the hydrates environment. The composition and diel activity patterns of the hydrates megafaunal community were studied with the use of linear video-transects conducted from February 2013 to April 2014. Since the summer of 2016, video-frames recorded at different locations of the site are analyzed for a biodiversity study and photomosaicing of the hydrate mounds continues, with 3D modelling of the mound structures also available as a new feature of the crawler deployed in May 2016. All data are archived in real-time and can be accessed online on the Ocean Networks Canada database. As deep-sea crawler technology and similar mobile, benthic platform technologies progress towards full operational autonomy, they will provide an even greater capacity for future monitoring and understanding of dynamic, extreme environments such as methane hydrate fields.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...