GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2017-01-20
    Description: Despite the technological advances of the last decades (e.g. ROVs, AUVs, cabled observatories), our knowledge of most deep-sea environments is still strongly limited by spatio-temporal sampling and observational capabilities. The novel Internet Operated Deep-Sea Crawler technology can provide high-frequency, multi-sensor data, during long-term deployments, 24/7 communication with researchers and broader spatial coverage (i.e. mobile platform) than fixed instrument installations. The crawler “Wally” is deployed at the Barkley Canyon methane hydrates site (NE Pacific, Canada; ~890 m depth) and connected to the Ocean Networks Canada NEPTUNE cabled observatory network (ONC; www.oceannetworks.ca). Here we present the environmental and biological datasets obtained from Wally instruments and cameras, during the first deployment phase (September 2010 to January 2015), as well as new features and preliminary results obtained since it was re-deployed (May 2016 – present). In addition to data provided by the standard payload of the crawler (i.e. ADCP, CTD, methane sensor, turbidity sensor and fluorometer), the hydrates community was video-monitored at different frequencies and timespans. Photomosaics were generated at two distinct locations, in order to map chemosynthetic bacterial mats and vesicomyid clam colonies covering the ~2-3 m high hydrate mounds, and document their temporal dynamics. The crawler followed the development of a deep-sea shell taphonomic experiment aiming to quantify biogenic carbon fluxes at the hydrates environment. The composition and diel activity patterns of the hydrates megafaunal community were studied with the use of linear video-transects conducted from February 2013 to April 2014. Since the summer of 2016, video-frames recorded at different locations of the site are analyzed for a biodiversity study and photomosaicing of the hydrate mounds continues, with 3D modelling of the mound structures also available as a new feature of the crawler deployed in May 2016. All data are archived in real-time and can be accessed online on the Ocean Networks Canada database. As deep-sea crawler technology and similar mobile, benthic platform technologies progress towards full operational autonomy, they will provide an even greater capacity for future monitoring and understanding of dynamic, extreme environments such as methane hydrate fields.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-23
    Description: Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner crabs through these depths of the canyon system, in early spring and likely linked to the crab's reproductive cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-27
    Description: Three benthic megafaunal species (i.e. sablefish Anoplopoma fimbria; pacific hagfish Eptatretus stoutii and a group of juvenile crabs) were tested for diel behavioral patterns at the methane hydrates site of Barkley Canyon (890 m depth), off Vancouver Island (BC, Canada). Fluctuations of animal counts in linear video-transects conducted with the Internet Operated Deep-Sea Crawler ªWallyº in June, July and December of 2013, were used as proxy of population activity rhythms. Count time series and environmental parameters were analyzed under the hypothesis that the environmental conditioning of activity rhythms depends on the life habits of particular species (i.e. movement type and trophic level). Nonlinear least squares modeling of biological time series revealed significant diel periods for sablefish in summer and for hagfish and crabs in December. Combined cross-correlation and redundancy (RDA) analyses showed strong relationships among environmental fluctuations and detected megafauna. In particular, sablefish presence during summer months was related to flow magnitude, while the activity of pacific hagfish and juvenile crabs in December correlated with change in chemical parameters (i.e. chlorophyll and oxygen concentrations, respectively). Waveform analyses of animal counts and environmental variables confirmed the phase delay during the 24 h cycle. The timing of detection of sablefish occurred under low flow velocities, a possible behavioral adaptation to the general hypoxic conditions. The proposed effect of chlorophyll concentrations on hagfish counts highlights the potential role of phytodetritus as an alternative food source for this opportunistic feeder. The juvenile crabs seemed to display a cryptic behavior, possibly to avoid predation, though this was suppressed when oxygen levels were at a minimum. Our results highlight the potential advantages such mobile observation platforms offer in multiparametric deep-sea monitoring in terms of both spatial and temporal resolution and add to the vastly understudied field of diel rhythms of deep-sea megafauna.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: Scientific, industrial and societal needs call urgently for the development and establishment of intelligent, cost-effective and ecologically sustainable monitoring protocols and robotic platforms for the continuous exploration of marine ecosystems. Internet Operated Vehicles (IOVs) such as crawlers, provide a versatile alternative to conventional observing and sampling tools, being tele-operated, (semi-) permanent mobile platforms capable of operating on the deep and coastal seafloor. Here we present outstanding observations made by the crawler “Wally” in the last decade at the Barkley Canyon (BC, Canada, NE Pacific) methane hydrates site, as a part of the NEPTUNE cabled observatory. The crawler followed the evolution of microhabitats formed on and around biotic and/or abiotic structural features of the site (e.g., a field of egg towers of buccinid snails, and a colonized boulder). Furthermore, episodic events of fresh biomass input were observed (i.e., the mass transport of large gelatinous particles, the scavenging of a dead jellyfish and the arrival of macroalgae from shallower depths). Moreover, we report numerous faunal behaviors (i.e., sablefish rheo- and phototaxis, the behavioral reactions and swimming or resting patterns of further fish species, encounters with octopuses and various crab intra- and interspecific interactions). We report on the observed animal reactions to both natural and artificial stimuli (i.e., crawler’s movement and crawler light systems). These diverse observations showcase different capabilities of the crawler as a modern robotic monitoring platform for marine science and offshore industry. Its long deployments and mobility enable its efficiency in combining the repeatability of long-term studies with the versatility to opportunistically observe rarely seen incidents when they occur, as highlighted here. Finally, we critically assess the empirically recorded ecological footprint and the potential impacts of crawler operations on the benthic ecosystem of the Barkley Canyon hydrates site, together with potential solutions to mitigate them into the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...