GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature geoscience, London : Nature Publishing Group, 2008, 1(2008), Seite 439-443, 1752-0894
    In: volume:1
    In: year:2008
    In: pages:439-443
    Description / Table of Contents: Despite similar physical properties, the Northern and Southern Atlantic subtropical gyres have different biogeochemical regimes. The Northern subtropical gyre, which is subject to iron deposition from Saharan dust 1, is depleted in the nutrient phosphate, possibly as a result of iron-enhanced nitrogen fixation 2. Although phosphate depleted, rates of carbon fixation in the euphotic zone of the North Atlantic subtropical gyre are comparable to those of the South Atlantic subtropical gyre 3, which is not phosphate limited. Here we use the activity of the phosphorus-specific enzyme alkaline phosphatase to show potentially enhanced utilization of dissolved organic phosphorus occurring over much of the North Atlantic subtropical gyre. We find that during the boreal spring up to 30% of primary production in the North Atlantic gyre is supported by dissolved organic phosphorus. Our diagnostics and composite map of the surface distribution of dissolved organic phosphorus in the subtropical Atlantic Ocean reveal shorter residence times in the North Atlantic gyre than the South Atlantic gyre. We interpret the asymmetry of dissolved organic phosphorus cycling in the two gyres as a consequence of enhanced nitrogen fixation in the North Atlantic Ocean 4, which forces the system towards phosphorus limitation. We suggest that dissolved organic phosphorus utilization may contribute to primary production in other phosphorus-limited ocean settings as well.
    Type of Medium: Article
    Pages: graph. Darst
    ISSN: 1752-0894
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-27
    Description: This review examines interregional linkages and gives an overview perspective on marine ecosystem functioning in the north-eastern Atlantic. It is based on three of the 'systems' considered by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS was established in 2004 under the European Framework VI funding programme to promote integration of marine ecological research within Europe), the Arctic and Nordic Seas, North Atlantic shelf seas and North Atlantic. The three systems share common open boundaries and the transport of water, heat, nutrients and particulates across these boundaries modifies local processes. Consistent with the EUR-OCEANS concept of 'end-to-end' analyses of marine food webs, the review takes an integrated approach linking ocean physics, lower trophic levels and working up the food web to top predators such as marine mammals. We begin with an overview of the regions focusing on the major physical patterns and their implications for the microbial community, phytoplankton, zooplankton, fish and top predators. Human-induced links between the regional systems are then considered and finally possible changes in the regional linkages over the next century are discussed. Because of the scale of potential impacts of climate change, this issue is considered in a separate section. The review demonstrates that the functioning of the ecosystems in each of the regions cannot be considered in isolation and the role of the atmosphere and ocean currents in linking the North Atlantic Ocean, North Atlantic shelf seas and the Arctic and Nordic Seas must be taken into account. Studying the North Atlantic and associated shelf seas as an integrated 'basin-scale' system will be a key challenge for the early twenty-first century. This requires a multinational approach that should lead to improved ecosystem-based approaches to conservation of natural resources, the maintenance of biodiversity, and a better understanding of the key role of the north-eastern Atlantic in the global carbon cycle. © R.N. Gibson, R.J.A. Atkinson, and J.M.D. Gordon, Editors Talyor & Francis.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-27
    Description: A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II) + Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100 μM concentrations of sulphite a reduction time of 4 h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations. © 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-27
    Description: The marine biogeochemistries of carbon and nitrogen have come under increased scrutiny because of their close involvement in climate change and coastal eutrophication. Recent studies have shown that the high-temperature combustion (HTC) technique is suitable for routine analyses of dissolved organic matter due to its good oxidation efficiency, high sensitivity, and precision. In our laboratory, a coupled HTC TOC-NCD system with a sample changer was used for the automated and simultaneous determination of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)in seawater samples. TOC control software was used for TOC instrument control, DOC data acquisition, and data analysis. TDN data acquisition and manipulation was undertaken under LabVIEW. The combined system allowed simultaneous determination of DOC and TDN in the same sample using a single injection and provided low detection limits and excellent linear ranges for both DOC and TDN. The risk of contamination has been remarkably reduced due to the minimal sample manipulation and automated analyses. The optimised system provided a reliable tool for the routine determination of DOC and TDN in marine waters. © 2005 Hindawi Publishing Corporation.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-24
    Description: Copper, Cd and Zn can be found at elevated concentrations in contaminated estuarine and coastal waters and have potential toxic effects on phytoplankton species. In this study, the effects of these metals on the intracellular production of the polypeptides phytochelatin and glutathione by the marine diatom Phaeodactylum tricornutum were examined in laboratory cultures. Single additions of Cu and Cd (0.4 μM Cu2 and 0.45 μM Cd2+) to the culture medium induced the production of short-chained phytochelatins ((γ-Glu-Cys) n -Gly where n = 2-5), whereas a single addition of Zn (2.2 μM Zn2+) did not stimulate phytochelatin production. Combination of Zn with Cu resulted in a similar phytochelatin production compared with a single Cu addition. The simultaneous exposure to Zn and Cd led to an antagonistic effect on phytochelatin production, which was probably caused by metal competition for cellular binding sites. Glutathione concentrations were affected only upon exposure to Cd (85 increase) or the combination of Cd with Zn (65 decrease), relative to the control experiment. Ratios of phytochelatins to glutathione indicated a pronounced metal stress in response to exposures to Cu or Cd combined with Zn. This study indicates that variabilities in phytochelatin and glutathione production in the field can be explained in part by metal competition for cellular binding sites. © Springer 2006.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-24
    Description: Phytochelatins (PCs) and glutathione (GSH) are -SH-containing compounds produced by a range of organisms for intracellular functions, such as protection against oxidative stress, metal detoxification and regulation of intracellular metal concentrations. These compounds, particularly PCs, have a potential use as metal-stress indicators for phytoplankton in natural waters. Despite their important roles, there is a paucity of data on intracellular GSH and PCs produced by natural phytoplankton assemblages. Current analytical methods for the determination of these compounds in phytoplankton from natural waters are based on high-performance liquid chromatography (HPLC) with detection of fluorescent derivatives, and comprise multi-step protocols. In this article, we discuss the analytical methods for HPLC determination of PCs and GSH, as there are limitations and practical challenges when they are applied to environmental studies. © 2005 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-04
    Description: The effects of dissolved organic compounds on the determination of nanomolar concentrations of Fe(II) have been compared using two luminol-based flow injection chemiluminescence (FI-CL) methods. One used the direct injection of sample into the luminol reagent stream, and the other incorporated on-line solid-phase extraction of the analyte on an 8-hydroxyquinoline microcolumn. The CL signals from analyses of dissolved iron species (Fe(II) and Fe(III)) with model ligands and organic compounds were examined in high-purity water and seawater. The organic compounds included natural reducing agents (e.g., ascorbic acid), nitrogen σ-donor/π-acceptor compounds (e.g., 1,4-dipyridine, protoporphyrin IX), aromatic compounds (e.g., 1,4-dihydroxybenzene), synthetic iron chelators (e.g., EDTA), and natural iron binding compounds (e.g., desferrioxamine B, ferrichrome A). Fe(II) determinations for both luminol FI-CL methods were affected by submicromolar concentrations of redox-active compounds, strong iron binding ligands (i.e., log KFeL > 6), and compounds with electron-donating functional groups in both high-purity water and seawater. This was due to reactions between organic molecules and iron species before and during analysis, rather than chemiluminescence caused by the individual organic compounds. In addition, the effects of strong ligands and size speciation on Fe(II) recoveries from seawater following acidification (pH 2) and reduction (100 μM sodium sulfite) were investigated. © 2005 American Chemical Society.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 52 (6). pp. 2530-2539.
    Publication Date: 2014-01-30
    Description: To investigate the biogeochemistry of iron in the waters of the European continental margin, we determined the dissolved iron distribution and redox speciation in filtered (〈0.2 μm) open-ocean and shelf waters. Depth profiles were sampled over the shelf slope southeast of the Chapelle Bank area (47.61°N, 4.24°W to 46.00°N, 8.01°W) and a horizontal surface-water transect over the shelf and through the English Channel (la Manche) and the southern North Sea (46°N, 8°W to 52°N, 4°E). An abrupt trace-metal front was found near the shelf slope, indicated by a horizontal gradient of dissolved iron (DFe) and aluminium (DAl), which correlated with changing salinities (r2 = 0.572 and 0.528, respectively, n = 92). Labile Fe(II) concentrations varied from 〈12 pmol L-1 in North Atlantic surface waters to >200 pmol L-1 in the near bottom waters of the shelf break. Labile Fe(II) accounted for ∼5 of the dissolved iron species in surface shelf waters (mean 5.0 ± 2.7), whereas higher Fe(II) fractions (i.e., >8) were observed near the sea bottom on the shelf break and during a midday solar maximum in surface waters in the vicinity of the Scheldt river plume. Benthic processes (resuspension and diagenesis) constituted important sources of Fe(II) and DFe in this region, and photoreduction of Fe(III) species in shelf waters caused enhanced labile Fe(II) concentrations. These processes increased the lability of iron and its potential availability to marine organisms in the shelf ecosystem. © 2007, by the American Society of Limnology and Oceanography, Inc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-27
    Description: A flow-injection (FI)-based instrument under Lab VIEW control for monitoring iron in marine waters is described. The instrument incorporates a miniature, low-power photomultiplier tube (PMT), and a number of microelectric and solenoid actuated valves and peristaltic pumps. The software allows full control of all flow injection components and processing of the data from the PMT. The optimised system is capable of 20 injections per hour, including preconcentration and wash steps. The detection limit (3 sd of the blank) is 21 pM at sea and the linear range is 21-2000 pM with a 60-second sample load time. Typical precision between replicate FI peaks is 5.9 ± 3.2 (n = 4) over the linear range. © 2005 Hindawi Publishing Corporation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-04
    Description: Dissolved iron (DFe; 〈0.2 µm) and dissolved manganese (DMn; 〈0.2 µm) concentrations were determined in the water column of the Bay of Biscay (eastern North Atlantic Ocean) in March 2002. The samples were collected along a transect traversing from the European continental shelf over the continental slope. The highest DFe and DMn concentrations (2.39 nM and 6.10 nM, respectively) were observed in the bottom waters on the shelf at stations closest to the coast. The release of trace metal from resuspended particles and the diffusion from pore waters were probably at the origin of elevated DFe and DMn concentrations in the Bottom Boundary Layer (BBL). In the slope region, the highest total dissolvable iron (TDFe), DFe and DMn values (24.6 nM, 1.58 nM and 2.12 nM, respectively) were observed close to the bottom at depth of ca.~600–700 m. Internal wave activity and slope circulation are thought to be at the origin of this phenomenon. These processes were also very likely the cause of elevated concentrations (DFe: 1.27 nM, DMn: 2.34 nM) measured in surface waters of stations located in the same area. At stations off the continental slope, the vertical distribution of both metals were typical of open ocean conditions, indicating that inputs from the continental margin did not impact the metal distributions in the offshore waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...