GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 301 (1983), S. 324-327 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The work reported here, earlier studies of Nd/Sm isotope systematics2'3, and the recently reported profiles4 of nine REE, demonstrate the renewed interest in the REE in the oceans. All REE exist essentially in the trivalent oxidation state, and their chemical properties vary gradually along the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 19 (1998), S. 348-353 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytoplankton distribution patterns are still largely unknown for the Pacific region of the Southern Ocean. Pigment distributions were determined by HPLC on 40-m samples collected from the mixed layer during the ANTXII/4 cruise in March–May 1995 aboard RV “Polarstern”. A transect was covered (90°W, from 51°S to 70°S), crossing the Subantarctic Front in the north, the Polar Front, and the Southern Polar Front in the south. Coinciding with high concentrations of silicate, diatoms dominated in the Antarctic waters south of the Polar Front. North of the Polar Front, silicate concentrations dropped to values less than 10 μM. In this area flagellates (Prymnesiophyceae and green algae) were the dominant phytoplankton group. Nutrient depletion of the surface waters near the Southern Polar Front indicated formerly enhanced productivity. These findings confirmed previous observations by the British Sterna expedition, which described locally elevated chlorophyll a biomass near the southern boundary of the Southern Polar Front. We propose a role for supply of bioavailable iron via the front, and emphasise the importance of frontal systems for phytoplankton productivity in the Southern Ocean.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-05
    Description: The distribution of size fractionated dissolved iron (DFe, 〈0.2 μm) species was determined in the upper water column (0-150 m) of the Canary Basin (25-32°N and 18-24°W) on a research cruise in October 2002. A DFe concentration gradient resulting from a decrease in both soluble iron (SFe, 〈0.02 μm) and colloidal iron (CFe, 0.02-0.2 μm) was shown to extend from the coast of North West Africa into the oligotrophic gyre (varying from ∼1 nM in the shelf region to 0.15 nM in the most off shore waters). At the time of this study, the dominant dissolved Fe input to the region was deduced to be the advection of shelf and upwelled waters rather than Saharan dust deposition.SFe and CFe fractions had mean concentrations (± one standard deviation) of 0.25 ± 0.11 and 0.21 ± 0.16 nM, respectively (n = 58). Colloidal iron formed a highly variable fraction of DFe (ca. 0-80, mean of 42) in the region but was less variable in the low iron, oligotrophic intermediate waters (0.18 ± 0.06 nM, 31.7°N, 22.0°W, 0-1300 m depth). The high variability found at the most productive near-shelf stations was driven by biological processing and mixing of different water masses. In contrast, less variability between SFe and CFe at the remote off shore stations suggested that vertical variations in the water column were controlled more by chemical partitioning and vertical particle fluxes with evidence of preferential biological uptake and/or removal of SFe in the most remote surface waters. © 2010.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 52 (6). pp. 2530-2539.
    Publication Date: 2014-01-30
    Description: To investigate the biogeochemistry of iron in the waters of the European continental margin, we determined the dissolved iron distribution and redox speciation in filtered (〈0.2 μm) open-ocean and shelf waters. Depth profiles were sampled over the shelf slope southeast of the Chapelle Bank area (47.61°N, 4.24°W to 46.00°N, 8.01°W) and a horizontal surface-water transect over the shelf and through the English Channel (la Manche) and the southern North Sea (46°N, 8°W to 52°N, 4°E). An abrupt trace-metal front was found near the shelf slope, indicated by a horizontal gradient of dissolved iron (DFe) and aluminium (DAl), which correlated with changing salinities (r2 = 0.572 and 0.528, respectively, n = 92). Labile Fe(II) concentrations varied from 〈12 pmol L-1 in North Atlantic surface waters to >200 pmol L-1 in the near bottom waters of the shelf break. Labile Fe(II) accounted for ∼5 of the dissolved iron species in surface shelf waters (mean 5.0 ± 2.7), whereas higher Fe(II) fractions (i.e., >8) were observed near the sea bottom on the shelf break and during a midday solar maximum in surface waters in the vicinity of the Scheldt river plume. Benthic processes (resuspension and diagenesis) constituted important sources of Fe(II) and DFe in this region, and photoreduction of Fe(III) species in shelf waters caused enhanced labile Fe(II) concentrations. These processes increased the lability of iron and its potential availability to marine organisms in the shelf ecosystem. © 2007, by the American Society of Limnology and Oceanography, Inc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-04
    Description: Dissolved iron (DFe; 〈0.2 µm) and dissolved manganese (DMn; 〈0.2 µm) concentrations were determined in the water column of the Bay of Biscay (eastern North Atlantic Ocean) in March 2002. The samples were collected along a transect traversing from the European continental shelf over the continental slope. The highest DFe and DMn concentrations (2.39 nM and 6.10 nM, respectively) were observed in the bottom waters on the shelf at stations closest to the coast. The release of trace metal from resuspended particles and the diffusion from pore waters were probably at the origin of elevated DFe and DMn concentrations in the Bottom Boundary Layer (BBL). In the slope region, the highest total dissolvable iron (TDFe), DFe and DMn values (24.6 nM, 1.58 nM and 2.12 nM, respectively) were observed close to the bottom at depth of ca.~600–700 m. Internal wave activity and slope circulation are thought to be at the origin of this phenomenon. These processes were also very likely the cause of elevated concentrations (DFe: 1.27 nM, DMn: 2.34 nM) measured in surface waters of stations located in the same area. At stations off the continental slope, the vertical distribution of both metals were typical of open ocean conditions, indicating that inputs from the continental margin did not impact the metal distributions in the offshore waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-03
    Description: The first large-scale international intercomparison of analytical methods for the determination of dissolved iron in seawater was carried out between October 2000 and December 2002. The exercise was conducted as a rigorously "blind" comparison of 7 analytical techniques by 24 international laboratories. The comparison was based on a large volume (700 L), filtered surface seawater sample collected from the South Atlantic Ocean (the "IRONAGES" sample), which was acidified, mixed and bottled at sea. Two 1-L sample bottles were sent to each participant. Integrity and blindness were achieved by having the experiment designed and carried out by a small team, and overseen by an independent data manager. Storage, homogeneity and time-series stability experiments conducted over 2.5 years showed that inter-bottle variability of the IRONAGES sample was good (〈 7), although there was a decrease in iron concentration in the bottles over time (0.8-0.5 nM) before a stable value was observed. This raises questions over the suitability of sample acidification and storage. For the complete dataset of 45 results (after excluding 3 outliers not passing the screening criteria), the mean concentration of dissolved iron in the IRONAGES sample was 0.59 ± 0.21 nM, representing a coefficient of variation (CV) for analytical comparability ("community precision") of 36 (1s), a significant improvement over earlier exercises. Within-run precision (5-10), inter-run precision (15) and inter-bottle homogeneity (〈 7) were much better than overall analytical comparability, implying the presence of: (1) random variability (inherent to all intercomparison exercises); (2) errors in quantification of the analytical blank; and (3) systematic inter-method variability, perhaps related to secondary sample treatment (e.g. measurement of different physicochemical fractions of iron present in seawater) in the community dataset. By grouping all results for the same method, analyses performed using flow injection-luminol chemiluminescence (with FeII detection after sample reduction) Bowie, A.R., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., 1998. Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection. Anal. Chim. Acta 361, 189-200 and flow injection-catalytic spectrophotometry (using the reagent DPD) Measures, C.I., Yuan, J., Resing, J.A., 1995. Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection. Mar. Chem. 50, 3-12 gave significantly (P = 0.05) higher dissolved iron concentrations than analyses performed using isotope dilution ICPMS Wu, J.F., Boyle, E.A., 1998. Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg(OH) 2 co-precipitation. Anal. Chim. Acta 367, 183-191. There was, however, evidence of scatter within each method group (CV up to 59%), implying that better uniformity in procedures may be required. This paper does not identify individual data and should not be viewed as an evaluation of single laboratories. Rather it summarises the status of dissolved iron analysis in seawater by the international community at the start of the 21st century, and can be used to inform future exercises including the SAFE iron intercomparison study in the North Pacific in October 2004. © 2005 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-04
    Description: Atmospheric iron and underway sea-surface dissolved (〈0.2 μm) iron (DFe) concentrations were investigated along a north-south transect in the eastern Atlantic Ocean (27°N/16°W-19°S/5°E). Fe concentrations in aerosols and dry deposition fluxes of soluble Fe were at least two orders of magnitude higher in the Saharan dust plume than at the equator or at the extreme south of the transect. A weaker source of atmospheric Fe was also observed in the South Atlantic, possibly originating in southern Africa via the north-easterly outflow of the Angolan plume. Estimations of total atmospheric deposition fluxes (dry plus wet) of soluble Fe suggested that wet deposition dominated in the intertropical convergence zone, due to the very high amount of precipitation and to the fact that a substantial part of Fe was delivered in dissolved form. On the other hand, dry deposition dominated in the other regions of the transect (73-97), where rainfall rates were much lower. Underway sea-surface DFe concentrations ranged 0.02-1.1 nM. Such low values (0.02 nM) are reported for the first time in the Atlantic Ocean and may be (co)-limiting for primary production. A significant correlation (Spearman's rho = 0.862, p〈0.01) was observed between mean DFe concentrations and total atmospheric deposition fluxes, confirming the importance of atmospheric deposition on the iron cycle in the Atlantic. Residence time of DFe in the surface waters relative to atmospheric inputs were estimated in the northern part of our study area (17 ± 8 to 28 ± 16 d). These values confirmed the rapid removal of Fe from the surface waters, possibly by colloidal aggregation. © 2003 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-04
    Description: Concentrations of dissolved iron (DFe, 0.2μm) were determined at two stations in the Biscay Abyssal Plain (North East Atlantic) in March 2002. DFe concentrations in the surface layer (0.23–0.34 nM) were typical of winter conditions in this area. At 1000 m, DFe concentrations increased to 0.62–0.86 nM. This feature is consistent with the production of DFe by remineralization of the biogenic material. However, at this depth, Mediterranean Outflow Water (MOW) could be an additional source of DFe. Below 2500 m, DFe concentrations were constant (0.75 ± 0.04 nM). An interesting feature of the profiles was the intermediate maximum of DFe (1.19–1.12 nM) around 2000 m, associated with the Labrador Sea Water (LSW). We suggest that the iron enrichment of LSW occurred when this water mass reached the continental margin, likely in the vicinity of the Goban plateau. Vertical distributions were highly dependent on water masses encountered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-04
    Description: A shipboard analytical intercomparison of dissolved (〈0.2 μm) iron in the surface waters of the Atlantic Ocean was undertaken during October 2000. A single underway surface (1-2 m) seawater sampling and filtration protocol was used, in order to minimise differences from possible sample contamination. Over 200 samples (1/h) were collected over 12 days and analysed immediately using four different analytical methods, based on three variants of flow injection with luminol chemiluminescence (FI-CL) and cathodic stripping voltammetry (CSV). Dissolved iron concentrations varied between 0.02 and 1.61 nM during the intercomparison. On average, CSV Electroanalysis 12 (2000) 565 measured 0.08 nM higher iron concentrations than one FI-CL method Anal. Chim. Acta 361 (1998) 189, which measured 0.13 nM higher iron values than the other two Anal. Chem. 65 (1993) 1524; Anal. Chim. Acta 377 (1998) 113, Statistical analyses (paired two-tailed t-test) showed that each analytical method gave significantly different dissolved iron concentrations at the 95% confidence interval. These data however, represent a significant improvement over earlier intercomparison exercises for iron. The data have been evaluated with respect to accuracy and overall inter-laboratory replicate precision, which was generally better than the 95% confidence intervals reported for the NASS Certified Reference Materials. Systematic differences between analytical methods were probably due to the extraction of different physico-chemical forms of iron during preconcentration, either on the micro-column resin (in the FI methods) or with competing ligand equilibration (in the CSV method). Small systematic concentration differences may also have resulted from protocols used for quantification of the analytical blank and instrument calibration. © 2003 Elsevier B.V All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-03
    Description: Aerosol (soluble and total) iron and water-column dissolved (DFe, 〈 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6-14 months). Enhanced near surface water concentrations of DFe (5.90-6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07-0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000-1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters. © 2007 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...