GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (42)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2019-05-10
    Description: Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean–atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 9, pp. 841-858, ISSN: 1814-9324
    Publication Date: 2019-07-17
    Description: Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and δ18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Δδ18O records are used as a proxy for the oxygen isotopic composition of seawater (δ18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual δ18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual δ18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), 6 p., pp. 69-74, ISBN: 978-3-319-00692-5, ISSN: 2191-589X
    Publication Date: 2015-06-05
    Description: This study aimed at quantifying the amplitudes of seasonality and interannual to centennial climate variability in the Caribbean region throughout the Holocene, by using marine (shallow-water corals) and terrestrial (speleothems) climate archives, and climate model simulations (COSMOS). Sea-surface temperature (SST) variability on interdecadal to multidecadal timescales was more pronounced during the mid-Holocene compared to the late Holocene. The amplitude of the SST annual cycle was within the present-day range throughout most of the last 6,000 years. Exceptions include slightly increased SST seasonality at 6,200 years ago, which can be attributed mainly to insolation forcing on orbital timescales, and an increased SST seasonality at 2,350 years ago that can be attributed to internal dynamics of the climate system (El Niño-Southern Oscillation). On multidecadal and millennial timescales, precipitation variability during the Holocene was strongly linked to SST in the North Atlantic Ocean, namely the Atlantic Multidecadal Oscillation and variations in the strength of the Atlantic Meridional Overturning Circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climatemodel simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales,whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean– atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Giry, Cyril; Felis, Thomas; Kölling, Martin; Wei, Wei; Lohmann, Gerrit; Scheffers, Sander R (2013): Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records. Climate of the Past, 9, 841-858, https://doi.org/10.5194/cp-9-841-2013
    Publication Date: 2023-10-28
    Description: Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Delta d18O records are used as a proxy for the oxygen isotopic composition of seawater (d18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual d18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual d18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-28
    Keywords: BON-4-G; Calculated, see reference(s); CaribClim_Coral_2006; Center for Marine Environmental Sciences; Diploria strigosa, Strontium/Calcium ratio; DRILL; Drilling/drill rig; ICP-OES, Perkin-Elmer, Optima 3300R; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Internal coral chronology; MARUM; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: text/tab-separated-values, 558 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-28
    Keywords: BON-7-B; Calculated, see reference(s); CaribClim_Coral_2006; Center for Marine Environmental Sciences; Diploria strigosa, Strontium/Calcium ratio; DRILL; Drilling/drill rig; ICP-OES, Perkin-Elmer, Optima 3300R; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Internal coral chronology; MARUM; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: text/tab-separated-values, 794 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Giry, Cyril; Felis, Thomas; Kölling, Martin; Scheffers, Sander R (2010): Geochemistry and skeletal structure of Diploria strigosa, implications for coral-based climate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, 378-387, https://doi.org/10.1016/j.palaeo.2010.10.022
    Publication Date: 2023-10-28
    Description: Geochemical tracers incorporated into the skeleton of reef-building corals are ideal proxies for reconstructing environmental parameters of ambient seawater such as temperature and salinity at subseasonal resolution. However, validation concerns of these environmental proxies due to the complex skeleton of some tropical Atlantic corals have hindered such coral-based environmental reconstructions in this region compared to the tropical Pacific. In order to identify complications associated with the complex skeletal architecture of the massive brain coral Diploria strigosa, we performed microsampling experiments along and across individual skeletal elements. We demonstrate that the mesoscale heterogeneity of Sr/Ca, d18O and d13C is a systematic feature of D. strigosa and is linked to different vital effects between skeletal elements. The thecal wall is significantly depleted in Sr, 18O and 13C compared to the adjacent septa and columella and differences between apparent temperature signatures of several degrees are greater for Sr/Ca suggesting that this temperature proxy is more sensitive to skeletal mixing than d18O. Parallel subseasonal microsampling experiments performed along individual skeletal elements of a single corallite of a D. strigosa coral which grew at a rate of 0.65 cm/year allow for investigating potential biases associated with its complex skeletal mesoarchitecture. Highest correlation between Sr/Ca and d18O from skeletal material retrieved from the centre of the thecal wall suggests that microdrilling the theca provides the best environmental signal compared to adjacent microsampling profiles. Moreover, based on monthly-mean climatology, the temperature dependence of Sr/Ca for this profile is comparable to previous calibrations published from faster growing D. strigosa. Based on these results, we conclude that accurate microsampling along the centre of the thecal wall of D. strigosa is a prerequisite for generating robust climate reconstructions from its skeleton.
    Keywords: BON-9-A; CaribClim_Coral_2006; Center for Marine Environmental Sciences; DRILL; Drilling/drill rig; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Giry, Cyril; Felis, Thomas; Kölling, Martin; Scholz, Denis; Wei, Wei; Lohmann, Gerrit; Scheffers, Sander R (2012): Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth and Planetary Science Letters, 331-332, 187–200, https://doi.org/10.1016/j.epsl.2012.03.019
    Publication Date: 2023-10-28
    Description: Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
    Keywords: BON-0-A; BON-20-A; BON-3-E; BON-4-G; BON-6-A; BON-7-A; BON-7-B; BON-9-A; BON-9-B; CaribClim_Coral_2006; CaribClim_Coral_Jan 2009; Center for Marine Environmental Sciences; DRILL; Drilling/drill rig; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: application/zip, 13 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Giry, Cyril; Felis, Thomas; Scheffers, Sander R; Fensterer, Claudia (2010): Assessing the potential of Southern Caribbean corals for reconstructions of Holocene temperature variability. IOP Conference Series: Earth and Environmental Science, 9(1), 012021, https://doi.org/10.1088/1755-1315/9/1/012021
    Publication Date: 2023-10-28
    Description: We present a 40-year long monthly resolved Sr/Ca record from a fossil Diploria strigosa coral from Bonaire (Southern Caribbean Sea) dated with U/Th at 2.35 ka before present (BP). Secondary modifiers of this sea surface temperature (SST) proxy in annually-banded corals such as diagenetic alteration of the skeleton and skeletal growth-rate are investigated. Extensive diagenetic investigations reveal that this fossil coral skeleton is pristine which is further supported by clear annual cycles in the coral Sr/Ca record. No significant correlation between annual growth rate and Sr/Ca is observed, suggesting that the Sr/Ca record is not affected by coral growth. Therefore, we conclude that the observed interannual Sr/Ca variability was influenced by ambient SST variability. Spectral analysis of the annual mean Sr/Ca record reveals a dominant frequency centred at 6–7 years that is not associated with changes of the annual growth rate. The first monthly resolved coral Sr/Ca record from the Southern Caribbean Sea for preindustrial time suggests that fossil corals from Bonaire are suitable tools for reconstructing past SST variability. Coastal deposits on Bonaire provide abundant fossil D. strigosa colonies of Holocene age that can be accurately dated and used to reconstruct climate variability. Comparisons of long monthly resolved Sr/Ca records from multiple fossil corals will provide a mean to estimate seasonality and interannual to interdecadal SST variability of the Southern Caribbean Sea during the Holocene.
    Keywords: BON-6-A; Calculated, see reference(s); CaribClim_Coral_2006; Center for Marine Environmental Sciences; Diploria strigosa, Strontium/Calcium ratio; DRILL; Drilling/drill rig; ICP-OES, Perkin-Elmer, Optima 3300R; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Internal coral chronology; MARUM; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: text/tab-separated-values, 960 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...