GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Coasts. ; Ecology. ; Electronic books.
    Description / Table of Contents: Presenting the extreme variety of coastal forms in all dimensions and from all latitudes and climates, this book shows the beauty of our planet. It contains over 170 colour images from Google Earth and terrestrial and oblique aerial photos from the authors.
    Type of Medium: Online Resource
    Pages: 1 online resource (302 pages)
    Edition: 1st ed.
    ISBN: 9789400707382
    Series Statement: Coastal Research Library ; v.2
    DDC: 551.457
    Language: English
    Note: Intro -- The Coastlines of the World with Google Earth -- Foreword -- About Google Earth -- Table of Contents -- Introduction: Oceans and Coastlines -- References -- 1 The Oceans -- 1.1 Extent, Origin and Topography -- 1.2 Sediments in the Oceans -- 1.3 Physics and Chemistry of Ocean Waters -- 1.4 Life in the Oceans -- 1.5 Movements in the Ocean: Currents, Waves and Tides -- 1.5.1 Ocean Currents -- 1.5.2 Waves -- 1.5.3 Tides -- 1.6.1 Changing Sea Levels -- 1.6.2 Sea level changes during the Ice ages -- References -- 2 Coastal Landforms and Landscapes -- 2.1 Classification of Coastal Landforms -- 2.2 Ice Cliffs, Calving Glaciers and Sea Ice -- 2.3 Structural Dominated Coastlines -- 2.4 Volcanic Coasts -- Santorini eruption (~1628 BC) and the legend of Atlantis -- 3 Coastlines Dominated by Ingression of the Sea into older Terrestrial Landforms -- 3.1 Ingression in Rocky Glacial Landscapes -- 3.2 Ingression in Sedimentary Glacial Landscapes -- 3.3 Ingression into Fluvial Landscapes -- 3.4 Ingression into Karst Landforms -- 3.5 Ingression into Eolian Landforms -- 3.6 Permafrost Coastlines with Ingression -- Reference -- 4 Destructive Coastlines -- 4.1 Bioerosion -- 4.2 Tafoni and Tessellated Pavements -- 4.3 Cliffs and Shore Platforms -- References -- 5 Sedimentary Coasts -- 5.1 Introduction - The beach and its features -- 5.2 Foreshore Features and Tidal Flats -- 5.3 Spits and Tombolos -- 5.4 Barriers, Barrier Islands and Lagoons -- 5.5 Beach Ridge Systems and Cheniers -- 5.6 Coastal Dunes -- 5.7 Marine Deltas -- References -- 6 Coasts Dominated by Organisms -- 6.1 Marine Plants - Algae and Seagrass -- 6.2 Marine Plants - Mangroves -- 6.3 Coral Reefs -- 6.4 Other organic hardgrounds -- References -- 7 Coasts as Archives of the Past -- 7.1 Geologic archives in coastal environments -- 7.2 Coastal Geoarchaeology -- References -- 8 Coasts at Risk. , 8.1 Coastal Natural Hazards - Storms and Tsunamis -- Storms and storm surges -- Tsunamis -- 8.2 Sea Level Rise - The unavoidable and uncertain future of our coasts -- 8.3 Man-made Coastlines -- References -- Epilogue -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-10
    Description: Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean–atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-01
    Description: Prehistoric storm records are relatively scarce in most parts of the world. This article presents storm records derived from coral rubble-based geological archives of the Houtman Abrolhos Archipelago located off the west coast of Australia, where the southernmost coral reefs of the Indian Ocean are found. Winter storm swell from the circum-Antarctic ‘Brave Westerlies’, as well as tropical cyclone waves, have left numerous ridge systems on dozens of islands of the archipelago, all composed of coral rubble from adjacent reefs. At three islands, seven ridge systems were dated by three different methods: U-series (68 dates), radiocarbon (64 dates), electron spin resonance (7 dates); 139 radiometric dates span the last 5500 years of the Holocene. In contrast to the geomorphological interpretation, the age sequences show ‘inversions’, hiatuses and different ages for the same ridge, all pointing to complicated ridge formation processes. Time gaps, some exceeding 1000 years, are interpreted as phases of erosion and not as phases without storm activity. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2016-07-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-12
    Description: The seasonality of hydroclimate during past periods of warmer than modern global temperatures is a critical component for understanding future climate change scenarios. Although only partially analogous to these scenarios, the last interglacial (LIG, Marine Isotope Stage 5e, ~127–117 ka) is a popular test bed. We present coral δ18O monthly resolved records from multiple Bonaire (southern Caribbean) fossil corals (Diploria strigosa) that date to between 130 and 118 ka. These records represent up to 37 years and cover a total of 105 years, offering insights into the seasonality and characteristics of LIG tropical Atlantic hydroclimate. Our coral δ18O records and available coral Sr/Ca-sea surface temperature (SST) records reveal new insights into the variable relationship between the seasonality of tropical Atlantic seawater δ18O (δ18Oseawater) and SST. Coral δ18O seasonality is found to covary with SST and insolation seasonality throughout the LIG, culminating in significantly higher than modern values at 124 and 126 ka. At 124 ka, we reconstruct a 2 month lead of the coral δ18O versus the Sr/Ca-SST annual cycle and increased δ18Oseawater seasonality. A fully coupled climate model simulates a concomitant increase of southern Caribbean Sea summer precipitation and depletion of summer δ18Oseawater. LIG hydroclimate at Bonaire differed from today's semiarid climate with a minor rainy season during winter. Cumulatively, our coral δ18O, δ18Oseawater, and model findings indicate a mid-LIG northward expansion of the South American Intertropical Convergence Zone into the southern Caribbean Sea, highlighting the importance of regional aspects within model and proxy reconstructions of LIG hydroclimate seasonality.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climatemodel simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales,whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean– atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Giry, Cyril; Felis, Thomas; Kölling, Martin; Wei, Wei; Lohmann, Gerrit; Scheffers, Sander R (2013): Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records. Climate of the Past, 9, 841-858, https://doi.org/10.5194/cp-9-841-2013
    Publication Date: 2023-10-28
    Description: Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Delta d18O records are used as a proxy for the oxygen isotopic composition of seawater (d18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual d18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual d18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brocas, William M; Felis, Thomas; Obert, J Christina; Gierz, Paul; Lohmann, Gerrit; Scholz, Denis; Kölling, Martin; Scheffers, Sander R (2016): Last interglacial temperature seasonality reconstructed from tropical Atlantic corals. Earth and Planetary Science Letters, 449, 418-429, https://doi.org/10.1016/j.epsl.2016.06.005
    Publication Date: 2023-10-28
    Description: Reconstructions of last interglacial (LIG, MIS 5e, ~127-117 ka) climate offer insights into the natural response and variability of the climate system during a period partially analogous to future climate change scenarios. We present well preserved fossil corals (Diploria strigosa) recovered from the southern Caribbean island of Bonaire (Caribbean Netherlands). These have been precisely dated by the 230Th/U-method to between 130 and 120 ka ago. Annual banding of the coral skeleton enabled construction of time windows of monthly resolved strontium/calcium (Sr/Ca) temperature proxy records. In conjunction with a previously published 118 ka coral record, our eight records of up to 37 years in length, cover a total of 105 years within the LIG period. From these, sea surface temperature (SST) seasonality and variability in the tropical North Atlantic Ocean is reconstructed. We detect similar to modern SST seasonality of ~2.9 °C during the early (130 ka) and the late LIG (120-118 ka). However, within the mid-LIG, a significantly higher than modern SST seasonality of 4.9 °C (at 126 ka) and 4.1 °C (at 124 ka) is observed. These findings are supported by climate model simulations and are consistent with the evolving amplitude of orbitally induced changes in seasonality of insolation throughout the LIG, irrespective of wider climatic instabilities that characterised this period. The climate model simulations suggest that the SST seasonality changes documented in our LIG coral Sr/Ca records are representative of larger regions within the tropical North Atlantic. These simulations also suggest that the reconstructed SST seasonality increase during the mid-LIG is caused primarily by summer warming. A 124 ka old coral documents, for the first time, evidence of decadal SST variability in the tropical North Atlantic during the LIG, akin to that observed in modern instrumental records.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...