GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (26)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2020-02-06
    Description: An important tool for deep-sea temperature reconstruction is Mg/Ca paleothermometry applied to benthic foraminifera. Foraminifera of the genus Melonis appear to be promising candidates for temperature reconstructions due to their wide geographical and bathymetric distribution, and their infaunal habitat, which was suggested to reduce secondary effects from carbonate ion saturation (Δ[CO3 2−]). Here, we make substantial advances to previous calibration efforts and present new multi-lab Mg/Ca data for Melonis barleeanum and Melonis pompilioides from more than one hundred core top samples spanning in situ bottom temperatures from −1 to 16 °C, coupled with morphometric analyses of the foraminifer tests. Both species and their morphotypes seem to have a similar response of Mg/Ca to growth temperature. Compilation of new and previously published data reveals a linear dependence of temperature on Mg/Ca, with a best fit of Mg/Ca (mmol/mol) = 0.113 ± 0.005 ∗ BWT (°C) + 0.792 ± 0.036 (r2 = 0.81; n = 120; 1σ SD). Salinity, bottom water Δ[CO3 2−], and varying morphotypes have no apparent effect on the Mg/Ca-temperature relationship, but pore water Δ[CO3 2−] might have had an influence on some of the samples from the tropical Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 1174–1194, doi:10.1002/2017PA003122.
    Description: Mg/Ca and stable oxygen isotope compositions (δ18O) of planktic foraminifera tests are commonly used as proxies to reconstruct past ocean conditions including variations in the vertical water column structure. Accurate proxy calibrations require thorough regional studies, since parameters such as calcification depth and temperature of planktic foraminifera depend on local environmental conditions. Here we present radiocarbon-dated, modern surface sediment samples and water column data (temperature, salinity, and seawater δ18O) from the Western Pacific Warm Pool. Seawater δ18O (δ18OSW) and salinity are used to calculate individual regressions for western Pacific surface and thermocline waters (δ18OSW = 0.37 × S-12.4 and δ18OSW = 0.33 × S-11.0). We combine shell δ18O and Mg/Ca with water column data to estimate calcification depths of several planktic foraminifera and establish regional Mg/Ca-temperature calibrations. Globigerinoides ruber, Globigerinoides elongatus, and Globigerinoides sacculifer reflect mixed layer conditions. Pulleniatina obliquiloculata and Neogloboquadrina dutertrei and Globorotalia tumida preserve upper and lower thermocline conditions, respectively. Our multispecies Mg/Ca-temperature calibration (Mg/Ca = 0.26exp0.097*T) matches published regressions. Assuming the same temperature sensitivity in all species, we propose species-specific calibrations that can be used to reconstruct upper water column temperatures. The Mg/Ca temperature dependencies of G. ruber, G. elongatus, and G. tumida are similar to published equations. However, our data imply that calcification temperatures of G. sacculifer, P. obliquiloculata, and N. dutertrei are exceptionally warm in the western tropical Pacific and thus underestimated by previously published calibrations. Regional Mg/Ca-temperature relations are best described by Mg/Ca = 0.24exp0.097*T for G. sacculifer and by Mg/Ca = 0.21exp0.097*T for P. obliquiloculata and N. dutertrei.
    Description: Bundesministerium für Bildung und Forschung (BMBF) Grant Number: 03G0228A; National Science Foundation (NSF) Grant Number: OCE1131371; DFG-Research Center/Cluster of Excellence “The Ocean in the Earth System”
    Description: 2018-05-09
    Keywords: Western Pacific Warm Pool ; Mg/Ca calibration ; Oxygen isotopes ; Planktic foraminifera ; Thermocline reconstruction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Moffa-Sanchez, Paola; Oppo, Delia W; Martínez Méndez, Gema; Steinke, Stephan; Hebbeln, Dierk (2017): Stable Oxygen Isotopes and Mg/Ca in Planktic Foraminifera From Modern Surface Sediments of the Western Pacific Warm Pool: Implications for Thermocline Reconstructions. Paleoceanography, 32(11), 1174-1194, https://doi.org/10.1002/2017PA003122
    Publication Date: 2023-03-03
    Description: Mg/Ca and stable oxygen isotope compositions (d18O) of planktic foraminifera tests are commonly used as proxies to reconstruct past ocean conditions including variations in the vertical water column structure. Accurate proxy calibrations require thorough regional studies, since parameters such as calcification depth and temperature of planktic foraminifera depend on local environmental conditions. Here we present radiocarbon-dated, modern surface sediment samples and water column data (temperature, salinity, and seawater d18O) from the Western Pacific Warm Pool. Seawater d18O (d18OSW) and salinity are used to calculate individual regressions for western Pacific surface and thermocline waters (d18OSW = 0.37 × S-12.4 and d18OSW = 0.33 × S-11.0). We combine shell d18O and Mg/Ca with water column data to estimate calcification depths of several planktic foraminifera and establish regional Mg/Ca-temperature calibrations. Globigerinoides ruber, Globigerinoides elongatus, and Globigerinoides sacculifer reflect mixed layer conditions. Pulleniatina obliquiloculata and Neogloboquadrina dutertrei and Globorotalia tumida preserve upper and lower thermocline conditions, respectively. Our multispecies Mg/Ca-temperature calibration (Mg/Ca = 0.26exp0.097*T) matches published regressions. Assuming the same temperature sensitivity in all species, we propose species-specific calibrations that can be used to reconstruct upper water column temperatures. The Mg/Ca temperature dependencies of G. ruber, G. elongatus, and G. tumida are similar to published equations. However, our data imply that calcification temperatures of G. sacculifer, P. obliquiloculata, and N. dutertrei are exceptionally warm in the western tropical Pacific and thus underestimated by previously published calibrations. Regional Mg/Ca-temperature relations are best described by Mg/Ca = 0.24exp0.097*T for G. sacculifer and by Mg/Ca = 0.21exp0.097*T for P. obliquiloculata and N. dutertrei.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Prange, Matthias; Oppo, Delia W; Martínez Méndez, Gema; Tachikawa, Kazuyo; Moffa-Sanchez, Paola; Steinke, Stephan; Hebbeln, Dierk (2018): Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: Forcing mechanisms and implications for the glacial Walker circulation. Quaternary Science Reviews, 201, 429-445, https://doi.org/10.1016/j.quascirev.2018.10.030
    Publication Date: 2023-03-03
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-25
    Keywords: AGE; Argilloecia; BJ8-03-70GGC; Bradleya; GGC; Giant gravity corer; Index; Krithe; Ostracoda, other; Species diversity
    Type: Dataset
    Format: text/tab-separated-values, 276 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Iwatani, Hokuto; Yasuhara, Moriaki; Rosenthal, Yair; Linsley, Braddock K (2018): Intermediate-water dynamics and ocean ventilation effects on the Indonesian Throughflow during the past 15,000 years: Ostracod evidence. Geology, https://doi.org/10.1130/G40177.1
    Publication Date: 2023-01-13
    Description: The Indonesian Throughflow (ITF) is thought to influence thermohaline circulation dynamics and is important for understanding global climate and the marine ecosystem. The physical and chemical properties of North Pacific Intermediate Water (NPIW) and the underlying deep water incorporated into the ITF appear to be the result of climate-related preconditioning in the North and South Pacific. Thus, these high-latitude source waters play an important role in the Indo-Pacific oceanography. Here, we present the results of down-core faunal analyses of fossil ostracods (Crustacea) that we argue reflect NPIW variability in the central part of the Makassar Strait in the ITF over the past 15 k.y. The results show that the warm-water and low-oxygen–water fauna, and species diversity, rapidly increased at ca. 12 ka, reaching maxima during the Younger Dryas (YD). We interpret the faunal change and the diversity maximum at ca. 12 ka as a response to the stagnation of intermediate water due to the decline in ITF intensity during the YD. After ca. 7 ka, the ostracod faunal composition clearly changed from a relatively shallower, warmer, and low-oxygen fauna to a relatively deeper, colder, and high-oxygen fauna. Our interpretation is that the ostracod fauna was responding to the deglacial–early Holocene sea-level rise and the ventilation variations due to the mixing of the NPIW and the underlying deep water. The intermediate-water environment and the ecosystem in the ITF could have been driven by the intensification of the influence of the underlying deep water, caused by changes in the southern high-latitude source due to the latitudinal displacements of the southwesterly winds.
    Keywords: BJ8-03-70GGC; GGC; Giant gravity corer
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Moffa-Sanchez, Paola; Rosenthal, Yair; Babila, Tali L; Mohtadi, Mahyar; Zhang, Xu (2019): Temperature Evolution of the Indo‐Pacific Warm Pool Over the Holocene and the Last Deglaciation. Paleoceanography and Paleoclimatology, 34(7), 1107-1123, https://doi.org/10.1029/2018PA003455
    Publication Date: 2023-01-30
    Description: The Indo-Pacific Warm Pool (IPWP) contains the warmest surface ocean waters on our planet. Changes in the extent and position of the IPWP likely impacted the tropical and global climate in the past. To put recent ocean changes into a longer temporal context, we present new paleoceanographic sea surface temperature reconstructions from off Papua New Guinea (RR1313-23PC: 4.4939°S, 145.6703°E, 712 m water depth) which is at the heart of the Western Pacific Warm Pool (WPWP), which is the warmest region within the IPWP, across the last 17,000 years. A new surface temperature dataset from the northeast South China Sea is also presented (ODP1144: 20.053°N, 117.4189°E; water depth 2037 m). In both locations we use Mg/Ca measurements on G.ruber s.s. (white) to calculate sea surface temperatures.
    Keywords: G.ruber; Holocene; Mg/Ca; Western Pacific
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Keywords: Age, 14C; Age, dated; Age, dated standard error; Calendar age; Calendar age, maximum/old; Calendar age, minimum/young; DEPTH, sediment/rock; G.ruber; Holocene; Mg/Ca; Papa New Guinea; Roger A. Revelle; RR1313; RR1313-23PC; Sample ID; Western Pacific
    Type: Dataset
    Format: text/tab-separated-values, 72 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-07
    Keywords: AGE; Age, 14C; Calculated; Calculated from Mg/Ca ratios; DEPTH, sediment/rock; G.ruber; Globigerinoides ruber white, Magnesium/Calcium ratio; Mg/Ca; Papa New Guinea; Roger A. Revelle; RR1313; RR1313-23PC; Sea surface temperature; Western Pacific
    Type: Dataset
    Format: text/tab-separated-values, 240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...