GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 393 (1998), S. 557-561 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Ocean circulation is closely linked to climate change on glacial–interglacial and shorter timescales. Extensive reorganizations in the circulation of deep and intermediate-depth waters in the Atlantic Ocean have been hypothesized for both the last glaciation and the subsequent Younger ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: An important tool for deep-sea temperature reconstruction is Mg/Ca paleothermometry applied to benthic foraminifera. Foraminifera of the genus Melonis appear to be promising candidates for temperature reconstructions due to their wide geographical and bathymetric distribution, and their infaunal habitat, which was suggested to reduce secondary effects from carbonate ion saturation (Δ[CO3 2−]). Here, we make substantial advances to previous calibration efforts and present new multi-lab Mg/Ca data for Melonis barleeanum and Melonis pompilioides from more than one hundred core top samples spanning in situ bottom temperatures from −1 to 16 °C, coupled with morphometric analyses of the foraminifer tests. Both species and their morphotypes seem to have a similar response of Mg/Ca to growth temperature. Compilation of new and previously published data reveals a linear dependence of temperature on Mg/Ca, with a best fit of Mg/Ca (mmol/mol) = 0.113 ± 0.005 ∗ BWT (°C) + 0.792 ± 0.036 (r2 = 0.81; n = 120; 1σ SD). Salinity, bottom water Δ[CO3 2−], and varying morphotypes have no apparent effect on the Mg/Ca-temperature relationship, but pore water Δ[CO3 2−] might have had an influence on some of the samples from the tropical Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Li/Ca in calcitic benthic foraminiferal tests has been suggested to co-vary with both temperature and carbonate chemistry, but these two influences have been difficult to disentangle. We use several new downcore records of Li/Ca in Cibicidoides wuellerstorfi and Uvigerina, paired with the carbonate proxy B/Ca, to further elucidate this behavior. We also combine the downcore measurements with a compilation of coretop Li/Ca data. Uvigerina B/Ca presumably records pore water saturation with respect to calcite (ΔCO32−), though downcore data show that it partially reflects bottom water ΔCO32− (inferred from C. wuellerstorfi B/Ca), with a relationship that is consistent with a previous global coretop calibration. Downcore Li/Ca is significantly correlated to B/Ca in both taxa, implying a positive relationship between Li/Ca and carbonate chemistry. This connection breaks down in the coretop compilation however, likely due to the confounding influence of temperature on Li/Ca. We attempt to isolate the temperature influence using a negative exponential equation previously derived from abiotic calcite precipitation experiments, and introduce a new quantity ΔLi/Ca, which is the observed departure from the temperature-based prediction. This transformation brings the downcore and coretop Li/Ca measurements into alignment, with up to 90% of the ΔLi/Ca variance explained by ΔCO32−. Finally, we perform preliminary tests of Li/Ca as a paleo-proxy for both ΔCO32− and temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ca. 150 years. To reconstruct the history of temperature variations in the Fram Strait Branch of the Atlantic Current we analyzed a marine sediment core from the western Svalbard margin. In multidecadal resolution the Atlantic Water temperature record derived from planktic foraminifer associations and Mg/Ca measurements shows variations corresponding to the well-known climatic periods of the last millennium (Medieval Climate Anomaly, Little Ice Age, Modern/Industrial Period). We find that prior to the beginning of atmospheric CO2 rise at ca. 1850 A.D. average summer temperatures in the uppermost Atlantic Water entering the Arctic Ocean were in the range of 3-4.5°C. Within the 20th century, however, temperatures rose by ca. 2°C and eventually reached the modern level of ca. 6°C. Such values are unprecedented in the 1000 years before and are presumably linked to the Arctic Amplification of global warming. Taking into account the ongoing rise of global temperatures, further warming of inflowing Atlantic Water is expected to have a profound influence on sea ice and air temperatures in the Arctic.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Talk] In: 2. PAST Gateways International Conference and Workshop, 19.05.-23.05.2014, Trieste, Italy . Proceedings of the II PAST Gateways International Conference and Workshop : Trieste, May 19-­23, 2014 / Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. Eds.: Renata G. Lucchi ; Colm O’Cofaigh ; Michele Rebesco ; Carlo Barbante ; pp. 48-49 .
    Publication Date: 2019-09-23
    Description: Mg to Ca ratios of the epibenthic foraminifer species Cibicidoides wuellerstorfi have been identified to be strongly controlled by temperature and thus to have great potential for reconstructing bottom water temperatures, especially from the lower end of the temperature range (0-6°C; Tisserand et al., 2013). In the Fram Strait, where main water mass exchanges between the Arctic Ocean and the world’s oceans occur, new temperature estimation tools independent from faunal assemblages can help to better understand the complex interaction of different water masses with possible implications to changes in the meridional overturning circulation and the heat flux to the Arctic Ocean. Furthermore, Mg/Ca temperatures can help unravelling the local impact (e.g., of brine-enriched waters) from general trends in bottom water circulation. In order to apply Mg/Ca-derived temperatures to paleo-records from the Fram Strait, a calibration relationship between modern Mg/Ca ratios to bottom water temperatures which fits the environmental conditions of the Fram Strait needs to be developed. We therefore studied Mg/Ca ratios of C. wuellerstorfi in a set of coretop samples from the Fram Strait and the Norwegian margin where bottom temperatures range between -0.5 and -1°C. For the calibration to modern temperatures, we used modern oceanographic data from both existing conductivity-temperature-depth (CTD) casts and the World Ocean Data Base 2013 (Boyer et. al., 2013). Benthic Mg/Ca ratios are relatively high suggesting a preference of C. wuellerstorfi to incorporate Mg at temperatures below 0°C. Although no correlation has been found to existing temperature calibrations using higher temperature ranges (0-6°C), the data are in line with existing Mg/Ca data from C. wuellerstorfi from the Norwegian Sea and the Fram Strait (Martin et al., 2002; Elderfield et al., 2006).While correlation between Mg/Ca ratios to either temperature or salinity is difficult to constrain, better correlation exists to water depth. We therefore consider the carbonate ion effect as one possible explanation for the relatively high Mg/Ca ratios found in coretop samples from the Fram Strait and the Nordic Seas. Despite the difficulties to constrain a temperature calibration for this low temperature range down to -1°C, variations in benthic Mg/Ca ratios investigated in Holocene records from the eastern Fram Strait display trends similar to those found in other benthic proxy indicators. A short-lived decrease in benthic carbon isotopes and sortable silt mean grain size thus seems to correlate to lower Mg/Ca ratios during the 8.2 ka event. Also, a Late Holocene trend towards significantly higher benthic oxygen isotopes may be related to decreasing Mg/Ca ratios. Essential bibliography Boyer, T.P., Antonov, J.I., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Johnson, D.R., Locarnini, R.A., Mishonov, A.V., O'Brien, T.D., Paver, C.R., Reagan, J.R., Seidov, D., Smolyar, I.V., Zweng, M.M. 2013. World Ocean Database 2013. Sydney Levitus, Ed., Alexey Mishonov, Technical Ed., NOAA Atlas NESDIS 72. 209 pp. Elderfield, H., Yu, J., Anand, P., Kiefer, T., Nyland, B. 2006. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth and Planetary Science Letters 250, 633-649. Martin, P.A., Lea, D.W., Rosenthal, Y., Shackleton, N., Sarnthein, M., Papenfuss, T. 2002. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth and Planetary Science Letters 198, 193-209. Tisserand, A.A., Dokken, T.M., Waelbroeck, C., Gherardi, J.-M., Scao, V., Fontanier, C., Jorissen, F. 2013. Refining benthic foraminiferal Mg/Ca-temperature calibrations using core-tops from the western tropical Atlantic: Implication for paleotemperature estimation. Geochemistry, Geophysics, Geosystems, 14(4), 929-946.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward-flowing Atlantic Water is the major means of heat advection toward the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal-scale record of ocean temperature variations during the past 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early–21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic amplification of global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 1013-1034, doi:10.1029/2018PA003408.
    Description: The chemical composition of benthic foraminifera from marine sediment cores provides information on how glacial subsurface water properties differed from modern, but separating the influence of changes in the origin and end‐member properties of subsurface water from changes in flows and mixing is challenging. Spatial gaps in coverage of glacial data add to the uncertainty. Here we present new data from cores collected from the Demerara Rise in the western tropical North Atlantic, including cores from the modern tropical phosphate maximum at Antarctic Intermediate Water (AAIW) depths. The results suggest lower phosphate concentration and higher carbonate saturation state within the phosphate maximum than modern despite similar carbon isotope values, consistent with less accumulation of respired nutrients and carbon, and reduced air‐sea gas exchange in source waters to the region. An inversion of new and published glacial data confirms these inferences and further suggests that lower preformed nutrients in AAIW, and partial replacement of this still relatively high‐nutrient AAIW with nutrient‐depleted, carbonate‐rich waters sourced from the region of the modern‐day northern subtropics, also contributed to the observed changes. The results suggest that glacial preformed and remineralized phosphate were lower throughout the upper Atlantic, but deep phosphate concentration was higher. The inversion, which relies on the fidelity of the paleoceanographic data, suggests that the partial replacement of North Atlantic sourced deep water by Southern Ocean Water was largely responsible for the apparent deep North Atlantic phosphate increase, rather than greater remineralization.
    Description: National Science Foundation (NSF) Grant Numbers: OCE‐0750880, OCE‐1335191, OCE‐1558341, OCE‐1536380; Woods Hole Oceanographic Institution (WHOI) Grant Numbers: 27007592, 27000808
    Keywords: Glacial Atlantic circulation ; Preformed phosphate ; Remineralized phosphate ; Antarctic Intermediate Water ; Nutrient redistribution ; Tropical phosphate maximum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Waelbroeck, C., Lougheed, B. C., Riveiros, N. V., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., Wacker, L., Abbott, P., Dumoulin, J., Thil, F., Eynaud, F., Rossignol, L., Fersi, W., Albuquerque, A. L., Arz, H., Austin, W. E. N., Came, R., Carlson, A. E., Collins, J. A., Dennielou, B., Desprat, S., Dickson, A., Elliot, M., Farmer, C., Giraudeau, J., Gottschalk, J., Henderiks, J., Hughen, K., Jung, S., Knutz, P., Lebreiro, S., Lund, D. C., Lynch-Stieglitz, J., Malaize, B., Marchitto, T., Martinez-Mendez, G., Mollenhauer, G., Naughton, F., Nave, S., Nuernberg, D., Oppo, D., Peck, V., Peeters, F. J. C., Penaud, A., Portilho-Ramos, R. d. C., Repschlaeger, J., Roberts, J., Ruehlemann, C., Salgueiro, E., Goni, M. F. S., Schonfeld, J., Scussolini, P., Skinner, L. C., Skonieczny, C., Thornalley, D., Toucanne, S., Van Rooij, D., Vidal, L., Voelker, A. H. L., Wary, M., Weldeab, S., & Ziegler, M. Consistently dated Atlantic sediment cores over the last 40 thousand years. Scientific Data, 6, (2019): 165, doi:10.1038/s41597-019-0173-8.
    Description: Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
    Description: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013 Grant agreement n° 339108). New 14C dates for cores EW9209-1JPC and V29-202 were funded by NSF OCE grants to DWO. FN, ES and AV acknowledge FCT funding support through project UID/Multi/04326/2019. We thank T. Garlan and P. Guyomard for having given us access to cores from the Service Hydrographique et Océanographique de la Marine. We acknowledge N. Smialkowski for help with formatting the data into text files, and L. Mauclair, L. Leroy and G. Isguder for the picking of numerous foraminifer samples for radiocarbon dating. We are grateful to S. Obrochta, E. Cortijo, E. Michel, F. Bassinot, J.C. Duplessy, and L. Labeyrie for advice and fruitful discussions. This paper is LSCE contribution 6572.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-29
    Description: During the past decades Mg/Ca ratios have been increasingly used in order to calculate past temperature variations independent from faunal assemblages. Especially in the Fram Strait, the main pathway of heat flux to the Arctic, new temperature estimation tools are urgently needed to better understand past complex interaction of different water masses and the extent of Atlantic Water advection to the Arctic Ocean. The Holocene section of a sediment core from the western Svalbard margin has been studied at high-resolution for benthic proxy indicators to reconstruct deepwater sources and mixing in the Arctic Gateway since the last ca 10,000 years. Benthic stable isotope values and sortable silt mean grain size data are compared to a first, preliminary data set of Mg/Ca paleotemperatures established from the benthic foraminifer species Cibicidoides wuellerstorfi in the eastern Fram Strait. When compared to planktic proxy indicators, this reconstruction of past bottom water temperatures at a northernmost site allows to estimate the linkage between deepwater inflow and AW advection within the West Spitsbergen Current. Furthermore, benthic Mg/Ca temperatures can help unravelling the local impact (e.g., by brine-enriched waters) from general trends in bottom water circulation. Short-lived decreases in benthic carbon isotope values seem to correlate to cold surface water events in the area such as the 8.2 ka event. Similarly, decreases in benthic carbon isotope values in the Nordic Seas around 8 ka have been assigned to decreased bottom water ventilation possibly due to an entrainment of relatively fresh water into the thermohaline system (Bauch et al., 2001). While sluggish bottom current speeds have been found for the 8.2 ka event north of our site on the Yermak Plateau (Hass, 2002), during colder events on the Western Svalbard margin sediment data seem to anticorrelate to benthic carbon isotope data either suggesting a rather unexpected increase in bottom current velocity or an impact of brine-enriched winter waters from the fjord/trough system which might have generated increased lateral coarser-grained sediment injections (Sarnthein et al., 2003). A Late Holocene trend towards significantly higher benthic oxygen isotopes may be either related to a cooling or increasing salinity in bottom waters. Higher salinity of bottom waters may be again caused by dense water formation during winter sea-ice formation in southern and western Svalbard fjords (e.g., Quadfasel et al., 1988; Rudels et al., 2005). Bauch, H. A., H. Erlenkeuser, R. F. Spielhagen, U. Struck, J. Matthiessen, J. Thiede, and J. Heinemeier (2001a), A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr, Quaternary Science Reviews, 20(4), 659-678. Hass, H. C. (2002), A method to reduce the influence of ice-rafted debris on a grain size record from northern Fram Strait, Polar Research, 21(2), 299-306. Quadfasel, D., B. Rudels, and K. Kurz (1988), Outflow of dense water from a Svalbard fjord into the Fram Strait, Deep Sea Research Part A. Oceanographic Research Papers, 35(7), 1143-1150. Rudels, B., G. Bjork, J. Nilsson, P. Winsor, I. Lake, and C. Nohr (2005), The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition, Journal of Marine Systems, 55(1-2), 1-30. Sarnthein, M., S. van Krefeldt, H. Erlenkeuser, P. M. Grootes, M. Kucera, U. Pflaumann, and M. Schulz (2003), Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75◦N, Boreas, 32, 447-461.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...