GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
Document type
Years
Year
  • 1
    Publication Date: 2018-11-09
    Description: Protists (microbial eukaryotes) are diverse, major components of marine ecosystems, and are fundamental to ecosystem services. In the last 10 years, molecular studies have highlighted substantial novel diversity in marine systems including sequences with no taxonomic context. At the same time, many known protists remain without a DNA identity. Since the majority of pelagic protists are too small to identify by light microscopy, most are neither comprehensively or regularly taken into account, particularly in Long-term Ecological Research Sites. This potentially undermines the quality of research and the accuracy of predictions about biological species shifts in a changing environment. The ICES Working Group for Phytoplankton and Microbial Ecology conducted a questionnaire survey in 2013–2014 on methods and identification of protists using molecular methods plus a literature review of protist molecular diversity studies. The results revealed an increased use of high-throughput sequencing methods and a recognition that sequence data enhance the overall datasets on protist species composition. However, we found only a few long-term molecular studies and noticed a lack of integration between microscopic and molecular methods. Here, we discuss and put forward recommendations to improve and make molecular methods more accessible to Long-term Ecological Research Site investigators.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Global Ecology and Oceanography of Harmful Algal Blooms, Global Ecology and Oceanography of Harmful Algal Blooms, Springer, 16 p., pp. 187-203, ISBN: 978-3-319-7006
    Publication Date: 2018-06-23
    Description: Coastal systems partially surrounded by land such as coastal embayments, estuaries and fjords have characteristics that affect the development of harmful algal blooms. Among these, shallow water depths and geophysical constraints from surrounding land masses favour stronger links between the water column and bottom sediments. Typical circulation patterns (e.g., in estuaries) can limit the exchange with offshore waters and favour cell retention. Sub-mesoscale and high-frequency processes are particularly important physical factors that influence pattern and persistence of HABs in coastal systems. Coupling with benthic nutrient fluxes or seed banks from the bottom is enhanced as the degree of physical robustness of coastal systems decreases. The links between bottom cyst distribution patterns and intensity or extension of HABs are still not fully understood. The importance of intra-specific diversity has been highlighted for many HAB species but tools are needed to assist in situ identification of these various life cycle stages. Alternative metabolic strategies, such as mixotrophy or reliance on organic nutrients and allelochemically mediated species interactions, can play a critical role in the development of HA blooms particularly in semi-confined coastal environments. Future work should address the influence of climate change and of coastal aquaculture on blooms of these harmful species in coastal environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-19
    Description: The genesis of phytoplankton blooms and the fate of their biomass in iron-limited, high-nutrient−low-chlorophyll regions can be studied under natural conditions with ocean iron fertilization (OIF) experiments. The Indo-German OIF experiment LOHAFEX was carried out over 40 d in late summer 2009 within the cold core of a mesoscale eddy in the productive southwest Atlantic sector of the Southern Ocean. Silicate concentrations were very low, and phytoplankton biomass was dominated by autotrophic nanoflagellates (ANF) in the size range 3−10 μm. As in all previous OIF experiments, the phytoplankton responded to iron fertilization by increasing the maximum quantum yield (Fv/Fm) and cellular chlorophyll levels. Within 3 wk, chlorophyll levels tripled and ANF biomass doubled. With the exception of some diatoms and dinoflagellates, the biomass levels of all other groups of the phyto- and protozooplankton (heterotrophic nanoflagellates, dinoflagellates and ciliates) remained remarkably stable throughout the experiment both inside and outside the fertilized patch. We attribute the unusually high biomass attained and maintained by ANF to the absence of their grazers, the salps, and to constraints on protozooplankton grazers by heavy predation exerted by the large copepod stock. The resistance to change of the ecosystem structure over 38 d after fertilization, indicated by homogeneity at regional and temporal scales, suggests that it was locked into a stable, mature state that had evolved in the course of the seasonal cycle. The LOHAFEX bloom provides a case study of a resistant/robust dynamic equilibrium between auto- and heterotrophic ecosystem components resulting in low vertical flux both inside and outside the patch despite high biomass levels.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-29
    Description: Harmful algal blooms (HABs) are natural phenomena that result from the interplay of biological, chemical, physical, and sedimentary processes occurring at different temporal and spatial scales. This paper provides an integrated description of HAB dynamics occurring at the mesoscale (10–100 km, sensu Haury et al., 1978) in confined and semi-confined coastal environments and under stratified water column conditions in a diversity of habitats where HAB events occur. It also focuses on relevant aspects occurring at fine-scale and even smaller cellular scales that are critical to species interactions with their environments. Examples include the key role of life-history stages in the recurrence of HABs in certain embayments; the physical-biological interactions driving the formation, maintenance, and decline of thin layers of plankton, including harmful microalgae; the fascinating, but poorly understood, domain of small-scale chemical interactions between HAB species and components of the food web; the potential link between human activities and climate change; and the trends in HAB occurrence. Development of new observing and sampling technologies and of new modeling approaches has resulted in greater understanding of these phenomena. Two Core Research Projects initiated under the GEOHAB Implementation Strategy, “HABs in Fjords and Coastal Embayments” and “HABs in Stratified Systems,” are discussed and priorities for future research toward improving the management and mitigation of HAB impacts are outlined.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...