GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2020-09-30
    Description: The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20–25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-25
    Description: We establish the cyst-theca relationship of the cyst species Trinovantedinium pallidifulvum Matsuoka 1987 based on germination experiments of specimens isolated from the Gulf of Mexico. We show that the motile stage is a new species, designated as Protoperidinium louisianensis. We also determine its phylogenetic position based on single-cell PCR of a single cell germinated from the Gulf of Mexico cysts. To further refine the phylogeny, we determined the LSU sequence through single-cell PCR of the cyst Selenopemphix undulata isolated from Brentwood Bay (Saanich Inlet, BC, Canada). The phylogeny shows that P. louisianensis is closest to P. shanghaiense, the motile stage of T. applanatum, and is consistent with the monophyly of the genus Trinovantedinium. Selenopemphix undulata belongs to a different clade than Selenopemphix quanta (alleged cyst of P. conicum), suggesting that the genus Selenopemphix is polyphyletic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC311th International Conference on Modern and Fossil Dinoflagellates, Bordeaux, 2017-07-17-2017-07-21
    Publication Date: 2017-09-20
    Description: Small, organic-walled microfossils were usually attributed to the general term ‘hystrichospheres’ until the early 1960’s. After the discovery that many of these ‘hystrichospheres’ displayed morphological characteristics that are specific for dinoflagellates namely having a cingulum, a sulcus, an operculum and a para-tabulation, Evitt (1963) created the new term ‘acritarchs’ to classify all the remaining forms of unknown biological affinity and separate these from dinocysts. The acritarchs therefore include various kinds of organisms that have been affiliated to animal remains, fossil spores of various groups, and to several classes of (green) algae, including the prasinophycean, zygnematophycean or chlorophycean groups, for example. Although of unknown biological affinities by definition, many Palaeozoic acritarchs, in particular taxa from the Ordovician, Silurian and Devonian, have been compared morphologically to dinoflagellates. Such morphotypes have therefore been considered to be the resting cysts of phytoplankton since many years. The diversity of (planktonic) dinocyst-like taxa strongly increases in the late Cambrian, triggering probably the onset of the ‘Ordovician plankton revolution.’ These acritarchs are virtually impossible to differentiate from dinocysts, showing often the same process morphology (see Kröck et al., this conference). Furthermore, their palaeoecological distribution patterns, following inshore-offshore trends, is identical to those of dinoflagellates. Also, their biogeographical distribution is comparable to that of modern dinoflagellate taxa. We consider that some Palaeozoic acritarchs might therefore have been produced by dinoflagellate-like species, although they do not display all morphological criteria necessary to be recognized as a dinoflagellate cyst.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4′, 3a, 6″, 6C, 5S, 6‴, 2⁗, a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC–MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45 fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4′, 2a, 6′′, 6C, 5S, 6′′′, 2′′′′, by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC–MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44 fg cell−1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...