GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (32)
Keywords
Language
Years
Year
  • 1
    Keywords: Forschungsbericht ; Pflegebedürftiger ; Misshandlung ; Vernachlässigung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (61 Seiten, 1,82 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 13N15160 , Verbundnummer 01195291 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bremerhaven : Alfred-Wegener-Institut (AWI) Helmholtz-Zentrum für Polar- und Meeresforschung
    Keywords: Forschungsbericht ; Pleistozän ; Paläoklima ; Modell ; Simulation ; Meer ; Kohlenstoffkreislauf
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (15 Seiten, 223,21 KB)
    Language: German , English
    Note: Förderkennzeichen BMBF 01LP1504A-D , Verbundnummer 01162215 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Literaturangaben , Sprache der Kurzfassungen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-05
    Description: Water levels in inland seas and lakes globally will drop, often dramatically, over the 21st century in response to climate change. Based on the case of the Caspian Sea, we argue for a concerted campaign to raise awareness of threats to people, biodiversity and geopolitical stability.
    Description: EU Horizon 2020 Grant Ref Number 642973
    Keywords: ddc:551.48 ; Climate-change impacts ; Ecosystem services ; Environmental impact ; Hydrology
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-04
    Description: Highlights: • Temperature anomalies for the Mid-Holocene compared to preindustrial are significantly different in the low- and high-resolution versions of the atmospheric model ECHAM5 • For summer, shortwave cloud radiative forcing emerges as an important factor. • For boreal winter, differences are mainly related to circulation changes. • Anomaly differences are regionally as large as the mid-Holocene minus preindustrial temperature signals. Abstract: This study evaluates the dependence of simulated surface air temperatures on model resolution and orography for the mid-Holocene. Sensitivity experiments with the atmospheric general circulation model ECHAM5 are performed with low (∼3.75°, 19 vertical levels) and high (∼1.1°, 31 vertical levels) resolution. Results are compared to the respective preindustrial runs. It is found that the large-scale temperature anomalies for the mid-Holocene (compared to preindustrial) are significantly different in the low- and high-resolution versions. For boreal winter, differences are mainly related to circulation changes caused by the response to thermal forcing in conjunction with orographic resolution. For summer, shortwave cloud radiative forcing emerges as an important factor. The anomaly differences (low minus high resolution version) in the Northern Hemisphere are regionally as large as the anomalous mid-Holocene temperature signals. Furthermore, they depend on the applied surface boundary conditions. We conclude that the resolution matters for the Northern Hemisphere response in mid-Holocene simulations, which should be taken into account in model-model and data-model comparisons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Climate change in Siberia is currently receiving a lot of attention because large permafrost-covered areas could provide a strong positive feedback to global warming through the release of carbon that has been sequestered there on glacial–interglacial timescales. Geological evidence and climate model experiments show that the Siberian region also played an exceptional role during glacial periods. The region that is currently known for its harsh cold climate did not experience major glaciations during the last ice age, including its severest stages around the Last Glacial Maximum (LGM). On the contrary, it is thought that glacial summer temperatures were comparable to the present day. However, evidence of glaciation has been found for several older glacial periods. We combine LGM experiments from the second and third phases of the Paleoclimate Modelling Intercomparison Project (PMIP2 and PMIP3) with sensitivity experiments using the Community Earth System Model (CESM). Together, these climate model experiments reveal that the intermodel spread in LGM summer temperatures in Siberia is much larger than in any other region of the globe and suggest that temperatures in Siberia are highly susceptible to changes in the imposed glacial boundary conditions, the included feedbacks and processes, and to the model physics of the different components of the climate model. We find that changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport drive strong local snow and vegetation feedbacks and that this combination explains the susceptibility of LGM summer temperatures in Siberia. This suggests that a small difference between two glacial periods in terms of climate, ice buildup or their respective evolution towards maximum glacial conditions can lead to strongly divergent summer temperatures in Siberia, allowing for the buildup of an ice sheet during some glacial periods, while during others, above-freezing summer temperatures preclude a multi-year snowpack from forming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: It is widely assumed that the ventilation of the Southern Ocean played a crucial role in driving glacial‐interglacial atmospheric CO2 levels. So far, however, ventilation records from the Indian sector of the Southern Ocean are widely missing. Here we present reconstructions of water residence times (depicted as ΔΔ14C and Δδ13C) for the last 32,000 years on sediment records from the Kerguelen Plateau and the Conrad Rise (~570‐ to 2,500‐m water depth), along with simulated changes in ocean stratification from a transient climate model experiment. Our data indicate that Circumpolar Deep Waters in the Indian Ocean were part of the glacial carbon pool. At our sites, close to or bathed by upwelling deep waters, we find two pulses of decreasing ΔΔ14C and δ13C values (~21–17 ka; ~15–12 ka). Both transient pulses precede a similar pattern in downstream intermediate waters in the tropical Indian Ocean as well as rising atmospheric CO2 values. These findings suggest that 14C‐depleted, CO2‐rich Circumpolar Deep Water from the Indian Ocean contributed to the rise in atmospheric CO2 during Heinrich Stadial 1 and also the Younger Dryas and that the southern Indian Ocean acted as a gateway for sequestered carbon to the atmosphere and tropical intermediate waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Highlights: • Threshold behavior in AMOC stability as response to freshwater perturbations in different background climate conditions. • The AMOC was more stable to freshwater forcing under glacial conditions, e.g. LGM. • Millennial-scale Dansgaard–Oeschger-type climate variability suppressed due to more stable ocean circulation. Abstract: Paleoclimatic records reveal that millennial-scale climate variability during the Pleistocene was most pronounced during intermediate glacial conditions, like Marine Isotope Stage 3 (MIS3), rather than during interglacial and fully glaciated climates, like the Last Glacial Maximum (LGM). The rapid transitions between cold stadials and warm interstadials recorded in Greenland ice cores during MIS3, referred to as Dansgaard–Oeschger (D-O) events, have been correlated with millennial-scale climate variations worldwide. Although the origin of D-O events is a matter of controversy, striking evidence shows that variations in the strength of the Atlantic meridional overturning circulation (AMOC) were involved. Therefore, understanding the stability properties of the ocean circulation under different background climate conditions is key to understanding D-O millennial-scale climate variability. In the present study, the stability of the AMOC to northern high-latitude freshwater perturbations under MIS3 and LGM boundary conditions is investigated by using the coupled climate model CCSM3. Stability diagrams constructed from a large set of equilibrium experiments reveal a nonlinear dependence of AMOC strength on freshwater forcing under both MIS3 and LGM conditions. The MIS3 baseline state is close to an AMOC stability threshold, which makes the MIS3 climate unstable with respect to minor perturbations. A similar threshold behavior in AMOC stability is observed under LGM conditions; however, larger freshwater perturbations are necessary to pass the threshold and weaken the AMOC. The threshold’s displacement relative to the MIS3 background climate is attributable to differences in the atmospheric hydrologic cycle and North Atlantic sea ice transport. Different atmospheric moisture transports are attributable to thermodynamic and dynamic processes related to differences in greenhouse gas forcing and ice-sheet height between MIS3 and the LGM. We conclude that the higher stability of the AMOC during the LGM is a physically plausible explanation for millennial-scale D-O-type climate variability being suppressed under full glacial conditions, whereas minor perturbations in freshwater fluxes could have triggered D-O climate shifts during MIS3.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The Last Interglacial (~129,000–116,000 years ago) is the most recent geologic period with a warmer-than-present climate. Proxy-based temperature reconstructions from this interval can help contextualize natural climate variability in our currently warming world, especially if they can define changes on decadal timescales. Here, we established a ~4.800-year-long record of sea surface temperature (SST) variability from the eastern Mediterranean Sea at 1–4-year resolution by applying mass spectrometry imaging of long-chain alkenones to a finely laminated organic-matter-rich sapropel deposited during the Last Interglacial. We observe the highest amplitude of decadal variability in the early stage of sapropel deposition, plausibly due to reduced vertical mixing of the highly stratified water column. With the subsequent reorganization of oceanographic conditions in the later stage of sapropel deposition, when SST forcing resembled the modern situation, we observe that the maximum amplitude of reconstructed decadal variability did not exceed the range of the recent period of warming climate. The more gradual, centennial SST trends reveal that the maximal centennial scale SST increase in our Last Interglacial record is below the projected temperature warming in the twenty-first century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Despite its great ecological importance, the main factors governing tree cover in tropical savannas as well as savanna-forest boundaries are still largely unknown. Here we address this issue by investigating marine sediment records of long-chain n-alkane stable carbon (δ13Cwax) and hydrogen (δDwax) isotopes from a core collected off eastern tropical South America spanning the last ca. 45 thousand years. While δ13Cwax is a proxy for the main photosynthetic pathway of terrestrial vegetation, tracking the relative proportion of C3 (mainly trees) versus C4 (mainly grasses) plants, δDwax is a proxy for continental precipitation, tracking the intensity of rainfall. The investigated core was collected off the mouth of the São Francisco River drainage basin, a tropical savanna-dominated region with dry austral autumn, winter and spring. On top of millennial-scale changes, driven by anomalies in the amount of precipitation associated with Heinrich Stadials, we identify a marked obliquity control over the expansion and contraction of tree and grass cover. During periods of maximum (minimum) obliquity, trees (grasses) reached maximum coverage. We suggest that maximum (minimum) obliquity decreased (increased) the length of the dry season allowing (hampering) the expansion of tree-dominated vegetation. Periods of maximum obliquity induced an anomalous heating (cooling) of the summer (winter) hemisphere that in combination with a delayed response of the climate system slightly increased autumn precipitation over the São Francisco River drainage basin, through a shift of the Intertropical Convergence Zone towards or further into the anomalously heated hemisphere. We found that atmospheric CO2 concentration has only a secondary effect on tree cover. Our results underline the importance of the dry season length as a governing factor in the long-term control of tree cover in tropical landscapes.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Paleoclimate proxy records from the North Atlantic region reveal substantially greater multicentennial temperature variability during the Last Glacial Maximum (LGM) compared to the current interglacial. As there was no obvious change in external forcing, causes for the increased variability remain unknown. Exploiting LGM simulations with a comprehensive coupled climate model along with high-resolution proxy records, we introduce an oscillatory mode of multicentennial variability, which is associated with moderate variations in the Atlantic meridional overturning circulation and depends on the large-scale salinity distribution. This self-sustained mode is amplified by sea-ice feedbacks and induces maximum surface temperature variability in the subpolar North Atlantic region. Characterized by a distinct climatic imprint and different dynamics, the multicentennial oscillation has to be distinguished from Dansgaard-Oeschger variability and emerges only under full LGM climate forcing. The potential of multicentennial modes of variability to emerge or disappear in response to changing climate forcing may have implications for future climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...