GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (37)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: Forschungsbericht ; Benguelastrom
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (26 Seiten, 3,78 MB) , Diagramme, Karte
    Language: German , English
    Note: Laufzeit: 01.07.2018 bis 31.12.202 , Literaturverzeichnis: Seite 21-22 , Förderkennzeichen BMBF 03F0795B , Verbundnummer 01183015 , Sprache der Kurzfassugen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Surface wind is taken as the primary driver of upwelling in the eastern boundary upwelling systems. The fluctuation of momentum flux associated with the variation in wind regulates the nutrient supply to the euphotic surface layer via changing the properties of oceanic mixed layer depth, the coastal and offshore upwelling, and horizontal advection. Here, the spatial and temporal variability of the surface wind field over the last seven decades across the Peruvian upwelling system is investigated. Strong fluctuations in seasonal to decadal timescales are found over the entire upwelling system. A semi-periodic wind fluctuation on an interannual timescale is found, which is closely related to the regional sea surface temperature and can be attributed to the El Niño Southern Oscillation (ENSO). However, the wind anomaly patterns during positive and negative phases of ENSO are not opposite, which suggests an asymmetric response of local wind to ENSO cycles. In addition, a semi-regular fluctuation on the decadal timescale is evident in the wind field, which can be attributed to the Interdecadal Pacific Oscillation (IPO). Our results show that the sea surface temperature over the Humboldt Upwelling System is closely connected to local wind stress and the wind stress curl. The SST wind stress co-variability seems more pronounced in the coastal upwelling cells, in which equatorward winds are very likely accompanied by robust cooling over the coastal zones. Over the past seven decades, wind speed underwent a slightly positive trend. However, the spatial pattern of the trend features considerable heterogeneity with larger values near the coastal upwelling cells.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-12
    Description: The southeastern tropical Atlantic hosts a coastal upwelling system characterized by high biological productivity. Three subregions can be distinguished based on differences in the physical climate: the tropical Angolan and the northern and southern Benguela upwelling systems (tAUS, nBUS, sBUS). The tAUS, which is remotely forced via equatorial and coastal trapped waves, can be characterized as a mixing-driven system, where the wind forcing plays only a secondary role. The nBUS and sBUS are both forced by alongshore winds and offshore cyclonic wind stress curl. While the nBUS is a permanent upwelling system, the sBUS is impacted by the seasonal cycle of alongshore winds. Interannual variability in the region is dominated by Benguela Niños and Niñas that are warm and cold events observed every few years in the tAUS and nBUS. Decadal and multidecadal variations are reported for sea surface temperature and salinity, stratification and subsurface oxygen. Future climate warming is likely associated with a southward shift of the South Atlantic wind system. While the mixing-driven tAUS will most likely be affected by warming and increasing stratification, the nBUS and sBUS will be mostly affected by wind changes with increasing winds in the sBUS and weakening winds in the northern nBUS.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along-track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross-slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average urn:x-wiley:21699275:media:jgrc24332:jgrc24332-math-0006(108) J m−2 per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2 out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2 in the deep basin, and 3.7 W m−2 above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near-bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer-warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice-free Arctic Ocean in summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Spatial and temporal variations of nutrient-rich upwelled water across the major eastern boundary upwelling systems are primarily controlled by the surface wind with different, and sometimes contrasting, impacts on coastal upwelling systems driven by alongshore wind and offshore upwelling systems driven by the local wind-stress-curl. Here, concurrently measured wind-fields, satellite-derived Chlorophyll-a concentration along with a state-of-the-art ocean model simulation spanning 2008-2018 are used to investigate the connection between coastal and offshore physical drivers of the Benguela Upwelling System (BUS). Our results indicate that the spatial structure of long-term mean upwelling derived from Ekman theory and the numerical model are fairly consistent across the entire BUS and closely followed by the Chlorophyll-a pattern. The variability of the upwelling from the Ekman theory is proportionally diminished with offshore distance, whereas different and sometimes opposite structures are revealed in the model-derived upwelling. Our result suggests the presence of sub-mesoscale activity (i.e., filaments and eddies) across the entire BUS with a large modulating effect on the wind-stress-curl-driven upwelling off Lüderitz and Walvis Bay. In Kunene and Cape Frio upwelling cells, located in the northern sector of the BUS, the coastal upwelling and open-ocean upwelling frequently alternate each other, whereas they are modulated by the annual cycle and mostly in phase off Walvis Bay. Such a phase relationship appears to be strongly seasonally dependent off Lüderitz and across the southern BUS. Thus, our findings suggest this relationship is far more complex than currently thought and seems to be sensitive to climate changes with short- and far-reaching consequences for this vulnerable marine ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Sedimentary molybdenum (Mo) and uranium (U) enrichments have been widely used as a proxy for redox conditions in oxygen-depleted marine paleo-environments. However, in a dynamic upwelling system the seasonal fluctuations from oxic to completely anoxic-sulfidic bottom waters and lateral sediment transport can modify the primary Mo and U signal of the sediment, which in turn may impact paleo-redox interpretations. In this study we present pore water and solid phase data collected at two cross shelf transects during the ‘more oxygenated’ austral winter and ‘anoxic’ austral summer to study the influence of spatially and seasonally contrasting redox conditions on the formation of authigenic Mo and U enrichments in organic carbon (TOC) rich mud belt sediments on the Namibian shelf. A mass balance was established for each element based on diffusive fluxes and element mass accumulation rates to evaluate the respective mechanisms of trace metal delivery, accumulation and recycling. Mo is delivered to the sediment in its dissolved form via diffusion across the sediment–water interface, especially during austral summer when bottom waters are anoxic and surface sediments are highly sulfidic. In the center of the inner shelf mud belt, the benthic Mo fluxes of up to 37 nmol cm−2 yr−1 into sulfidic surface sediments are the highest ever reported for reducing sulfidic systems and agree with the rate of Mo accumulation in the solid phase. Concurrently, high sedimentation rates and low terrigenous input limit solid phase Mo accumulation on the Namibian shelf. In ancient marine sediments, this mode of Mo cycling can be identified by low Mo/TOC ratios of ∼2 similar to those found in sediments deposited below the perennial oxygen minimum zone on the Peruvian shelf and to those found in deposits of the Cretaceous Oceanic Anoxic Event 2. Diffusive U fluxes into the sediment are generally too low to account for the sedimentary enrichment leading to the conclusion that U is delivered mainly in particulate form. In areas with anoxic bottom water, shallow dissolved U maxima directly below the sediment water interface and rather low sedimentary U content indicate that particulate U is recycled and largely released back into the bottom water. At sites where bottom water oxygen concentrations vary from anoxic to completely oxic on seasonal timescales, the depth at which Mo and U are removed from pore waters moves vertically within the sediment column thus defining a layer between the sediment surface and ∼20 cm depth, in which Mo and U accumulate in the solid phase. Our results emphasize the importance of short-term redox fluctuations in the bottom waters and underlying sediments, as well as lateral sediment transport for the authigenic enrichment of redox-sensitive trace metals in reducing shelf sediments. The relative enrichment patterns identified might be useful for the reconstruction of open marine anoxia in the geological past.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-25
    Description: The Humboldt Upwelling System (HUS) supports high levels of primary production and has the largest single-stock fishery worldwide. The high fish production is suggested to be related to high trophic transfer efficiency in the HUS. Mucous-mesh grazers (pelagic tunicates and gastropods) are mostly of low nutritious value and might reduce trophic transfer efficiency when they are locally abundant. Unfortunately, little is known about the spatial dynamics of mucous-mesh grazers from Peruvian waters, limiting our understanding of their potential ecological role(s). We provide a spatial assessment of mucous-mesh grazer abundance from the Peruvian shelf in austral summer 2018/2019 along six cross-shelf transects spanning from 8.5 to 16° S latitude. The community was dominated by appendicularians and doliolids. Salps occurred in high abundance but infrequently and pelagic gastropods were mostly restricted to the North. At low latitudes, the abundance of mucous-mesh grazers was higher than some key species of crustacean mesozooplankton. Transects in this region had stronger Ekman-transport, higher temperature, lower surface turbidity and a broader oxygenated upper water layer compared to higher-latitude transects. Small-scale lateral intrusions of upwelled water were potentially associated with high abundances of doliolids at specific stations. The high abundance and estimated ingestion rates of mucous-mesh grazers in the northern HUS suggest that a large flux of carbon from lower trophic levels is shunted to tunicates in recently upwelled water masses. The data provide important information on the ecology of mucous mesh grazers and stress the relevance to increase research effort on investigating their functioning in upwelling systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-02
    Description: Microstructure data was collected using a microstructure profiler MSS90D manufactured by Sea&Sun Technology in cooperation with ISW-Wassermesstechnik. Dissipation rates of turbulent kinetic energy are calculated as described in Schafstall et al. (Journal of Geophysical Research, 2010). Stored parameters include: Dissipation rate of turbulent kinetic energy from 2 microstructure shear sensors, temperature, salinity and depth.
    Keywords: BANINO; Benguela Niños: Physikalische Prozesse und langperiodische Variabilität; DATE/TIME; DEPTH, water; Dissipation rate; Event label; LATITUDE; LONGITUDE; M120; M120_0899-1; M120_0901-1; M120_0910-1; M120_0912-1; M120_0914-1; M120_0916-1; M120_0918-1; M120_0925-1; M120_0926-1; M120_0928-1; M120_0930-1; M120_0932-1; M120_0934-1; M120_0937-1; M120_0939-1; M120_0941-1; M120_0943-1; M120_0945-1; M120_0947-1; M120_0949-1; M120_0951-1; M120_0953-1; M120_0955-1; M120_0957-1; M120_0959-1; M120_0961-1; M120_0963-1; M120_0974-1; M120_MSS1-1; M120_MSS1-2; Meteor (1986); Micro structure probe; MSS; Pressure, water; Profile; SACUS/SACUS-II; Salinity; Southwest African Coastal Upwelling System and Benguela Niños; Temperature, water; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management
    Type: Dataset
    Format: text/tab-separated-values, 229007 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-02
    Description: Microstructure data was collected using a microstructure profiler MSS90D manufactured by Sea&Sun Technology in cooperation with ISW-Wassermesstechnik. Dissipation rates of turbulent kinetic energy are calculated as described in Schafstall et al. (Journal of Geophysical Research, 2010). Stored parameters include: Dissipation rate of turbulent kinetic energy from 2 microstructure shear sensors, temperature, salinity and depth.
    Keywords: BANINO; Benguela Niños: Physikalische Prozesse und langperiodische Variabilität; DATE/TIME; DEPTH, water; Dissipation rate; Event label; LATITUDE; LONGITUDE; M131; M131_1209-1; M131_1211-1; M131_1213-1; M131_1215-1; M131_1217-1; M131_1219-1; M131_1221-1; M131_1223-1; M131_1225-1; M131_1227-1; M131_1229-1; M131_1231-1; M131_1233-1; M131_1243-1; M131_1245-1; M131_1247-1; M131_1249-1; M131_1251-1; M131_1253-1; M131_1255-1; M131_1257-1; M131_1260-1; M131_1262-1; M131_1264-1; M131_1266-1; M131_1268-1; M131_1270-1; M131_1276-1; M131_1278-1; M131_1280-1; M131_1282-1; M131_1284-1; M131_1286-1; M131_1288-1; M131_1290-1; M131_1292-1; M131_1294-1; M131_1296-1; M131_1298-1; M131_1300-1; M131_1303-1; M131_1304-1; M131_1305-1; Meteor (1986); Micro structure probe; MSS; Pressure, water; Profile; SACUS/SACUS-II; Salinity; Southwest African Coastal Upwelling System and Benguela Niños; Temperature, water; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management
    Type: Dataset
    Format: text/tab-separated-values, 316408 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...