GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (7)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: Enrichment of the oceans with CO2 may be beneficial for some marine phytoplankton, including harmful algae. Numerous laboratory experiments provided valuable insights into the effects of elevated pCO(2) on the growth and physiology of harmful algal species, including the production of phycotoxins. Experiments close to natural conditions are the next step to improve predictions, as they consider the complex interplay between biotic and abiotic factors that can confound the direct effects of ocean acidification. We therefore investigated the effect of ocean acidification on the occurrence and abundance of phycotoxins in bulk plankton samples during a long-term mesocosm experiment in the Gullmar Fjord, Sweden, an area frequently experiencing harmful algal blooms. During the experimental period, a total of seven phycotoxin-producing harmful algal genera were identified in the fjord, and in accordance, six toxin classes were detected. However, within the mesocosms, only domoic acid and the corresponding producer Pseudo-nitzschia spp. was observed. Despite high variation within treatments, significantly higher particulate domoic acid contents were measured in the mesocosms with elevated pCO(2). Higher particulate domoic acid contents were additionally associated with macronutrient limitation. The risks associated with potentially higher phycotoxin levels in the future ocean warrants attention and should be considered in prospective monitoring strategies for coastal marine waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-13
    Description: Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD),has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudonitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only an ongoing status report but also provide a way to interpret causes and mechanisms of HABs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-05
    Description: Introduction Further development of recirculating aquaculture systems (RAS) towards zero-exchange depends mostly on the improvement of water treatment technologies. Ozone and UV radiation are leading technologies requiring high energy demand and educated staff able to manage the hurdles of their application. Moreover, there are some constrains for systems with poor mechanical filtration or where accumulation of particles higher than 50 µm significantly reduce the penetration potential of UV application. An alternative method commonly used in wastewater treatment to eliminate particulate aggregates is sonication. This method is based on cavitation effects which contribute to disrupt bacterial bioflocs and to break microbial cell walls leading to reduced viability. The present study aims to evaluate the disinfection capacity of a prototype created to treat process water in a RAS rearing aquaculture relevant freshwater and saltwater species with three sonication frequencies. The potential impact on the microbiome of the system in different compartments beside the reactor as well as bacterial viability was evaluated. Material and Methods An ultrasound prototype composed of 12 inducers connected to control devices was created in the frame of this project and adapted to a 5 m3 research RAS composed of three rearing tanks, a drum filter, 2 biofiltration units (nitrification denitrification), a sump and a protein skimmer with ozone disinfection. For the experiments the system was initially prepared for rearing European Seabass (Dicentrarchus labrax) and in a second experiment for rearing tilapia (Oreochromis niloticus). Process water coming from the sump was conducted into the prototype at a flow rate of 10 l/min and treated with 575 kHz, 862 kHz and 1142 kHz without further disinfection. For the saltwater experiments we tested 50% and 75% frequencies amplitude while only 75% amplitude was used for freshwater experiments. Each frequency was applied for 96 h and daily sampling was conducted to determine variations on microbial viability (BacLight Viability Kit) and bacterial community composition (FISH) with respect to reference samples collected before treatment. For FISH analysis (Fig. 1) generic FAM labelled DNA probes for Eubacteria (EUB) and Archaea (ARCH) as well as more specific probes for α-, β-, γ-, δ-Proteobacteria (ALF, BET, GAM, DELTA) and Actinobacteria (HGC) were included. When available, also non labelled competitor DNA probes in equimolar concentration as the respective labelled probe were used. All samples were counterstained with DAPI. Results and Discussion Marine RAS: The sterilizing effect was impacted by the amplitude used. Frequencies 575 kHz and 1142 kHz showed higher disinfection potential by 75% amplitude than 50%. The proportion of dead cells increased with the frequency. At 1142 kHz, a decrease in the total number of most of the selected bacterial groups was detected (Fig. 2) while the total numbers of bacteria at the end of application did not significantly change when using 575 kHz and 860 kHz. Sonication with all tested frequencies lead to changes in the bacterial community. Especially at 1142 kHz, a strong decrease in ALF, BET, GAM and ARC and an increase in DEL was observed (Table 1). This suggests a selective effect of US treatment on microbial community. Freshwater RAS: The sonication treatment of the system while rearing freshwater species did not show a defined impact with respect to changes in bacterial composition over time. At a frequency of 860 kHz, there was an increase in the number of counted bacteria over time (Fig. 3) while a slightly drop was observed by 575 and 1142 kHz. No marked changes in the composition of the bacterial community were detected for the latter frequencies. For all frequencies tested there was no conspicuous change in the percentage of dead cells.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-09
    Description: Epibenthic dinoflagellates occur globally and include many toxin-producing species of concern to human health and benthic ecosystem function. Such benthic harmful algal blooms (BHABs) have been well described from tropical and sub-tropical coastal environments, but assessments from north temperate waters, e.g., northern Europe, and polar regions are scarce. The present study addressed the biodiversity and distribution of potentially toxic epibenthic dinoflagellate populations along the west coast of Sweden (Kattegat-Skagerrak) by morphological and molecular criteria. Morphological analysis conducted by light- and electron-microscopy was then linked by DNA barcoding of the V4 region of 18S rRNA gene sequences to interpret taxonomic and phylogenetic relationships. The presence of two potentially toxigenic epibenthic dinoflagellates, Prorocentrum lima (Ehrenberg) F.Stein and Coolia monotis Meunier was confirmed, along with a description of their spatial and temporal distribution. For P. lima, one third of the cell abundance values exceeded official alarm thresholds for potentially toxic BHAB events (〉1000 cells gr–1 of macroalgae fresh weight). The same species were recorded consecutively for two summers, but without significant temporal variation in cell densities. SEM analyses confirmed the presence of other benthic Prorocentrum species: P. fukuyoi complex, P. cf. foraminosum and P. cf. hoffmannianum. Analyses of the V4 region of the 18S rRNA gene also indicated the presence P. compressum, P. hoffmannianum, P. foraminosum, P. fukuyoi, and P. nanum. These findings provide the first biogeographical evidence of toxigenic benthic dinoflagellates along the west coast of Sweden, in the absence of ongoing monitoring to include epibenthic dinoflagellates. Harmful events due to the presence of Coolia at shellfish aquaculture sites along the Kattegat-Skagerrak are likely to be rather marginal because C. monotis is not known to be toxigenic. In any case, as a preliminary assessment, the results highlight the risk of diarrhetic shellfish poisoning (DSP) events caused by P. lima, which may affect the development and sustainability of shellfish aquaculture in the region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-09
    Description: The marine dinoflagellate Alexandrium Halim represents perhaps the most significant and intensively studied genus with respect to species diversity, life history strategies, toxigenicity, biogeographical distribution, and global magnitude and consequences harmful algal blooms (HABs). The socioeconomic impacts, environmental and human health risks, and mitigation strategies for toxigenic Alexandrium blooms have also been explored in recent years. Human adaptive actions based on future scenarios of bloom dynamics and shifts in biogeographical distribution under climate-change parameters remain under development and not yet implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) project these issues were addressed with respect to past, current and anticipated future status of key HAB genera and expected benefits of enhanced monitoring. Data on the distribution and frequency of Alexandrium blooms related to paralytic shellfish toxin (PST) events from key CoCliME Case Study areas, comprising the North Sea and adjacent Kattegat-Skagerrak, Norwegian Sea, and Baltic Sea, and eastern North Atlantic marginal seas, were evaluated in a contemporary and historical context over the past several decades. The first evidence of possible biogeographical expansion of Alexandrium taxa into eastern Arctic gateways was provided from DNA barcoding signatures. Various key climate change indicators, such as salinity, temperature, and water-column stratification, relevant to Alexandrium bloom initiation and development were identified. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change impact indicators may play key roles in selecting for the occurrence and diversity of Alexandrium species within the broader microeukaryote communities. For example, shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for increased Alexandrium blooms, currently absent from this area. Ecological and socioeconomic impacts of Alexandrium blooms and effects on fisheries and aquaculture resources and coastal ecosystem function are evaluated, and, where feasible, effective adaptation strategies are proposed herein as emerging climate services.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-09
    Description: A bloom of the fish-killing haptophyte Chrysochromulina leadbeateri in northern Norway during May and June 2019 was the most harmful algal event ever recorded in the region, causing massive mortalities of farmed salmon. Accordingly, oceanographic and biodiversity aspects of the bloom were studied in unprecedented detail, based on metabarcoding and physico-chemical and biotic factors related with the dynamics and distribution of the bloom. Light- and electron-microscopical observations of nanoplankton samples from diverse locations confirmed that C. leadbeateri was dominant in the bloom and the primary cause of associated fish mortalities. Cell counts by light microscopy and flow cytometry were obtained throughout the regional bloom within and adjacent to five fjord systems. Metabarcoding sequences of the V4 region of the 18S rRNA gene from field material collected during the bloom and a cultured isolate from offshore of Tromsøy island confirmed the species identification. Sequences from three genetic markers (18S, 28S rRNA gene and ITS region) verified the close if not identical genetic similarity to C. leadbeateri from a previous massive fish-killing bloom in 1991 in northern Norway. The distribution and cell abundance of C. leadbeateri and related Chrysochromulina species in the recent incident were tracked by integrating observations from metabarcoding sequences of the V4 region of the 18S rRNA gene. Metabarcoding revealed at least 14 distinct Chrysochromulina variants, including putative cryptic species. C. leadbeateri was by far the most abundant of these species, but with high intraspecific genetic variability. Highest cell abundance of up to 2.7 × 107 cells L − 1 of C. leadbeateri was found in Balsfjorden; the high cell densities were associated with stratification near the pycnocline (at ca. 12 m depth) within the fjord. The cell abundance of C. leadbeateri showed positive correlations with temperature, negative correlation with salinity, and a slightly positive correlation with ambient phosphate and nitrate concentrations. The spatio-temporal succession of the C. leadbeateri bloom suggests independent initiation from existing pre-bloom populations in local zones, perhaps sustained and supplemented over time by northeastward advection of the bloom from the fjords.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-09
    Description: The diatom Pseudo-nitzschia H. Peragallo is perhaps the most intensively researched genus of marine pennate diatoms, with respect to species diversity, life history strategies, toxigenicity, and biogeographical distribution. The global magnitude and consequences of harmful algal blooms (HABs) of Pseudo-nitzschia are particularly significant because of the high socioeconomic impacts and environmental and human health risks associated with the production of the neurotoxin domoic acid (DA) among populations of many (although not all) species. This has led to enhanced monitoring and mitigation strategies for toxigenic Pseudo-nitzschia blooms and their toxins in recent years. Nevertheless, human adaptive actions based on future scenarios of bloom dynamics and proposed shifts in biogeographical distribution under climate-change regimes have not been implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) program these issues were addressed with respect to past, current and anticipated future status of key HAB genera such as Pseudo-nitzschia and expected benefits of enhanced monitoring. Data on the distribution and frequency of Pseudo-nitzschia blooms in relation to DA occurrence and associated amnesic shellfish toxin (AST) events were evaluated in a contemporary and historical context over the past several decades from key northern CoCliME Case Study areas. The regional studies comprised the greater North Sea and adjacent Kattegat-Skagerrak and Norwegian Sea, eastern North Atlantic marginal seas and Arctic gateways, and the Baltic Sea. The first evidence of possible biogeographical expansion of Pseudo-nitzschia taxa into frontier eastern Arctic gateways was provided from DNA barcoding signatures. Key climate change indicators, such as salinity, temperature, and water-column stratification were identified as drivers of upwelling and advection related to the distribution of regional Pseudo-nitzschia blooms. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change indicators may play key roles in selecting for the occurrence and diversity of Pseudo-nitzschia species within the broader microeukaryote communities. Shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for high-magnitude Pseudo-nitzschia blooms, currently absent from this area. Ecological and socioeconomic impacts of Pseudo-nitzschia blooms are evaluated with reference to effects on fisheries and mariculture resources and coastal ecosystem function. Where feasible, effective adaptation strategies are proposed herein as emerging climate services for the northern CoCLiME region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...