GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2024  (6)
Publikationsart
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2023-09-14
    Beschreibung: Abstract The Black Sea experienced pronounced millennial-scale changes in temperature and rainfall during the last glacial coinciding with Dansgaard-Oeschger cycles. However, little is known regarding the amount and sources of freshwater reaching this inland basin. Here, we present detailed ostracod δ〈sup〉18〈/sup〉O data from the glacial Black Sea showing subdued Dansgaard-Oeschger cyclicity and four prominent longer-term saw-tooth shaped Bond-like cycles. We propose that the δ〈sup〉18〈/sup〉Oostracods signature primarily reflects changes in the atmospheric circulation in response to the waxing and waning Eurasian Ice Sheet. The millennial-scale ice sheet variations likely resulted not only in latitudinal migrations of atmospheric frontal systems but also in shifts of dominant moisture sources for the Black Sea. Heavier isotopic precipitation arrived from the North Atlantic-Mediterranean realm during the warmer interstadials and lighter isotopic precipitation from the Eurasian continental interior during the colder stadials. The subdued Dansgaard-Oeschger variability likely reflects an integrated precipitation signal additionally affected by the long mixing times of the large Black Sea volume up to 1,500 years as suggested from hydrologic-isotope-balance modelling.
    Beschreibung: Moisture sources to the Black Sea changed in response to atmospheric frontal displacements driven by Eurasian Ice Sheet dynamics during the last glacial period, according to analyses of ostracod oxygen and strontium isotope data from Black Sea sediments.
    Beschreibung: Deutsche Forschungsgemeinschaft (German Research Foundation) https://doi.org/10.13039/501100001659
    Beschreibung: https://doi.org/10.5281/zenodo.4545579
    Schlagwort(e): ddc:551 ; paleohydrology ; palaeoclimate ; Black Sea ; Archangelsky Ridge ; isotope geochemistry ; Dansgaard-Oeschger cycles
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-07
    Beschreibung: The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the “cold water route” and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-07
    Beschreibung: End-member modelling of bulk grain-size distributions allows the unravelling of natural and anthropogenic depositional processes in salt marshes and quantification of their respective contribution to marsh accretion. The sedimentology of two marshes is presented: (1) a sheltered back-barrier marsh; and (2) an exposed, reinstated foreland marsh. Sedimentological data are supplemented by an age model based on lead-210 decay and caesium-137, as well as geochemical data. End-member modelling of grain-size data shows that marsh growth in back-barrier settings is primarily controlled by the settling of fines from suspension during marsh inundation. In addition, nearby active dunes deliver aeolian sediment (up to 77% of the total sediment accretion), potentially enhancing the capability of salt marshes to adapt to sea-level rise. Growth of exposed marshes, by contrast, primarily results from high-energy inundation and is attributed to two sediment-transport processes. On the seaward edge of the marsh, sedimentation is dominated by coarser-grained traction load, whereas further inland, settling of fine-grained suspension load prevails. In addition, a third, coarse-grained sediment sub-population is interpreted to derive from anthropogenic land-reclamation measures, that is material from drainage channels relocated onto the marsh surface. This process contributed up to 34% to the total marsh accretion and terminated synchronously with the end of land reclamation measures. Data suggest that natural sediment supply to marshes alone is sufficient to outpace contemporary sea-level rise in the study area. This underlines the resilience potential of salt marshes in times of rising sea levels. The comparison of grain-size sub-populations with observed climate variability implies that even managed marshes allow for the extraction of environmental signals if natural and anthropogenic sedimentary processes are determined and their relative contribution to bulk sediment composition is quantified. Data series based solely on bulk sediments, however, seem to be of limited use because it is difficult to exclude bias of natural signals by anthropogenic measures.
    Materialart: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Format: image
    Format: image
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-01-30
    Beschreibung: The Drake Passage, as the narrowest passage around Antarctica, exerts significant influences on the physical, chemical, and biological interactions between the Pacific and Atlantic Ocean. Here, we identify terrigenous sediment sources and transport pathways in the Drake Passage region over the past 140 ka BP (thousand years before present), based on grain size, clay mineral assemblages, geochemistry and mass-specific magnetic susceptibility records. Terrigenous sediment supply in the Drake Passage is mainly derived from the southeast Pacific, southern South America and the Antarctic Peninsula. Our results provide robust evidence that the Antarctic Circumpolar Current (ACC) has served as the key driver for sediment dispersal in the Drake Passage. High glacial mass accumulation rates indicate enhanced detrital input, which was closely linked to a large expansion of ice sheets in southern South America and on the Antarctic Peninsula during the glacial maximum, as significantly advanced glaciers eroded more glaciogenic sediments from the continental hinterlands into the Drake Passage. Moreover, lower glacial sea levels exposed large continental shelves, which together with weakened ACC strength likely amplified the efficiency of sediment supply and deposition in the deep ocean. In contrast, significant glaciers' shrinkage during interglacials, together with higher sea-level conditions and storage of sediment in nearby fjords reduced terrigenous sediment inputs. Furthermore, a stronger ACC may have induced winnowing effects and further lowered the mass accumulation rates. Evolution of ice sheets, sea level changes and climate related ACC dynamic have thus exerted critical influences on the terrigenous sediment supply and deposition in the Drake Passage region over the last glacial-interglacial cycle.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-06-21
    Beschreibung: The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological timescales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennialscale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the “cold water route” and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-03-04
    Beschreibung: The short sediment core EMB201/7-4 retrieved from the East Gotland Basin, central Baltic Sea, is explored here as a candidate to host the stratigraphical basis for the Anthropocene series and its equivalent Anthropocene epoch, still to be formalized in the Geological Time Scale. The core has been accurately dated back to 1840 CE using a well-established event stratigraphy approach. A pronounced and significant change occurs at 26.5 cm (dated 1956 ± 4 CE) for a range of geochemical markers including 239+240Pu, 241Am, fly-ash particles, DDT (organochlorine insecticide), total organic carbon, and bulk organic carbon stable isotopes. This stratigraphic level, which corresponds to a change in both lithology and sediment colour related to early anthropogenic-triggered eutrophication of the central Baltic Sea, is proposed as a Global Boundary Stratotype Section and Point for the Anthropocene series.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...