GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    In: Paleoceanography, Washington, DC : Union, 1986, Bd. 23.2008, S. PA2210, doi:10.1029/2006PA001339, 0883-8305
    In: volume:23
    In: year:2008
    In: pages:2210
    Type of Medium: Article
    ISSN: 0883-8305
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: A reconstruction of Holocene sea ice conditions in the Fram Strait provides insight into the palaeoenvironmental and palaeoceanographic development of this climate sensitive area during the past 8500 years BP. Organic geochemical analyses of sediment cores from eastern and western Fram Strait enable the identification of variations in the ice coverage that can be linked to changes in the oceanic (and atmospheric) circulation system. By means of the sea ice proxy IP25, phytoplankton-derived biomarkers and ice rafted detritus (IRD) increasing sea ice occurrences are traced along the western continental margin of Spitsbergen throughout the Holocene, which supports previous palaeoenvironmental reconstructions that document a general cooling. A further significant ice advance during the Neoglacial is accompanied by distinct sea ice fluctuations, which point to short-term perturbations in either the Atlantic Water advection or Arctic Water outflow at this site. At the continental shelf of East Greenland, the general Holocene cooling, however, seems to be less pronounced and sea ice conditions remained rather stable. Here, a major Neoglacial increase in sea ice coverage did not occur before 1000 years BP. Phytoplankton-IP25 indices (“PIP25-Index”) are used for more explicit sea ice estimates and display a Mid Holocene shift from a minor sea ice coverage to stable ice margin conditions in eastern Fram Strait, while the inner East Greenland shelf experienced less severe to marginal sea ice occurrences throughout the entire Holocene. Highlights ► Biomarker and IRD data give insight into Holocene sea ice conditions in Fram Strait. ► We find increasing sea ice coverage off West Spitsbergen throughout the Holocene. ► Oceanic/atmospheric variability caused Neoglacial sea ice fluctuations. ► Ice conditions along East Greenland shelf remain rather stable until 1000 years BP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Talk] In: AGU Fall Meeting 2011, 05.12.-09.12.2011, San Francisco, California, USA .
    Publication Date: 2012-02-23
    Description: ABSTRACT FINAL ID: PP43C-06 The reconstruction of palaeo sea ice coverage in the Arctic realm gained increasing interest throughout the past decades and the approaches to identify ancient sea ice occurrences are manifold. By means of organic geochemical biomarker studies and IRD analyses we reconstruct Holocene sea ice conditions in the subpolar North Atlantic, where the spatial and temporal distribution of sea ice is mainly controlled by the advection of warm Atlantic Water via the West Spitsbergen Current and the export of polar water and sea ice from the Arctic Ocean via the East Greenland Current (Rudels et al., 2005). Variations in the strength of this oceanic circulation regime may either stimulate or reduce the sea ice extent. With high-resolution analyses of sediment cores from the western continental margin of Spitsbergen and the East Greenland shelf we provide new evidence for the highly variable character of the sea ice conditions in this area. The combination of the sea ice proxy IP25 (Belt et al., 2007) with phytoplankton-derived biomarkers (e.g. brassicasterol, dinosterol; Volkman, 2006) enables a reliable reconstruction of sea ice and sea surface conditions, respectively (Müller et al., 2009; 2011). By means of these biomarkers, we identify gradually increasing sea ice occurrences from the Mid to the Late Holocene. These are also traceable in the IRD data and align with the Neoglacial cooling trend. Throughout the past ca. 3,000 years BP we observe a significant short-term variability in the biomarker records, which points to rapid advances and retreats of sea ice at the continental margin of West Spitsbergen. To what extent a seesawing of temperate Atlantic Water advection may account for these sea ice fluctuations requires further investigation. Concurrent variations in Siberian river discharge (Stein et al., 2004) and varying glacier extents in Scandinavia and Spitsbergen (Nesje et al., 2001; Svendsen and Mangerud, 1997), however, strengthen that these fluctuations may be influenced or even controlled by the North Atlantic/Arctic Oscillation (NAO/AO). At the continental shelf of East Greenland, the general Holocene cooling, however, seems to be less pronounced and a notable increase in sea ice coverage did not occur before 1,000 years BP. Phytoplankton-IP25 indices (“PIP25-Index”) are used for more explicit sea ice estimates and display a Mid Holocene shift from a minor sea ice coverage to stable ice margin conditions in Fram Strait. References Belt, S.T. et al., 2007. Organic Geochemistry, 38(1): 16-27. Müller, J. et al. 2009. Nature Geoscience, 2(11): 772-776. Müller, J. et al., 2011. Earth and Planetary Science Letters, 306 (3-4), 137-148. Nesje, A. et al., 2001. The Holocene, 11(3): 267-280. Rudels, B. et al., 2005. Journal of Marine Systems, 55(1-2): 1-30. Stein, R. et al., 2004. Quaternary Science Reviews, 23(11-13): 1485-1511. Svendsen, J.I. and Mangerud, J., 1997. The Holocene, 7: 45-57. Volkman, J.K., 2006. In: J.K. Volkman (Editor), Handbook of Environmental Chemistry. Springer-Verlag, Berlin, Heidelberg, pp. 27-70.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-23
    Description: ABSTRACT FINAL ID: PP31A-1838 High concentrations of carbonate in surface sediments of the Nordic Seas are generally related to warm Atlantic Water (AW) inflow. This relationship was recently used to infer the Holocene dynamics of Atlantic-derived water off North-West Iceland (Giraudeau et al, 2010; QSR vol. 29) following suggestions that carbonate production in the vicinity of Denmark Strait is tightly linked with inputs of warm, nutrient-rich Irminger Current waters. The present study aims at testing this assumption in the two main passageways of AW to the Arctic Ocean: Fram Strait and the Barents Sea, with a focus on a high resolution Holocene sediment record collected off western Svalbard. Our datasets on extant coccolithophores, as well as estimates of coccolith-carbonate contents within the studied marine cores suggest that sedimentation of calcium carbonate in the northernmost North Atlantic essentially reflects production rates of coccolithophores, and that sedimentation of their fossil remains is driving to a high extent the Holocene variations in net CaCO3 accumulation in Fram Strait and the SW Barents Sea. Our coccolith-based proxy records are indicative of a complex regional dynamics of Holocene surface water changes in these two regions. With the exception of a ca. 2 000 years delayed recovery of surface AW influence to the SW Barents Sea in the early Holocene, both regions experienced the same history of surface water temperature changes until ca. 3 000 cal.yrs BP. A Holocene sea-surface thermal optimum is clearly recognized in both regions during the 8 000 to 7 000 cal. yrs BP interval, followed by a large scale surface cooling triggered by reduced poleward inflow of AW across the Iceland-Scotland Ridge. A decoupling in the pattern of coccolith-carbonate sedimentation between Fram Strait and the SW Barents Sea characterizes the late Holocene. While near continuous surface water warming impacted the southern Barents Sea throughout the last 3 000 years, the eastern Fram Strait was affected by the settling, during maximum AW inflow to the Arctic Ocean, of a strong stratification separating a fresh, sea-ice rich surface mixed-layer of polar origin from an AW-derived poleward water mass.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-20
    Description: Changes in the Holocene interaction of the (i) cold/fresh East Greenland Current (EGC) and (ii) warm/saline Irminger Current (IC) in northern Denmark Strait have been reconstructed from benthic and planktic foraminifera assemblages, ice-rafted debris, grain-size analyses and quantitative X-ray diffraction. During the time from c. 10 600 to 8000 cal a BP, palaeoceanographic reconstructions reveal waning deglacial influence from the receding Greenland Ice Sheet and presence of a strong EGC caused low surface water productivity. From c. 8000 cal a BP, a predominant influence of Atlantic-sourced IC waters on subsurface water conditions became established in northern Denmark Strait, which accompanied low surface water productivity. Relatively warm surface and subsurface water conditions, i.e. reduced EGC and strong IC influence, are found from c. 6500 to 4500 cal a BP, representing Holocene optimum-like conditions. A mid- to late Holocene EGC strengthening caused increased stratification and formation of a distinct halocline. However, we recognize millennial-scale periods of reduced stratification by an enhanced influence of Atlantic-sourced IC Water on surface water conditions: (i) at c. 2500–1400 cal a BP the time of the Roman Warm Period and (ii) at c. 300 cal a BP the later part of the Little Ice Age. These periods of oceanic warming probably relate to changes in the Subpolar Gyre dynamics that led to enhanced entrainment of Atlantic-sourced IC Water into northern Denmark Strait.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2011-09-01
    Description: An understanding of the interaction between ice sheet dynamics and forcing mechanisms, such as oceanic and atmospheric circulation, is important because of the potential contribution of these processes to constraining models that seek to predict future rates of sea-level change. Here we report new benthic foraminiferal data from Disko Bugt, West Greenland, showing a close correlation between subsurface ocean temperature changes and the ice margin position of the glacier Jakobshavn Isbrae over the past 100 yr. In particular, our faunal data show that warm ocean currents entered a bay, Disko Bugt, during the retreat phases of Jakobshavn Isbrae from A.D. 1920 to 1950 and since 1998. We also show a link between West Greenland ocean temperature and the Atlantic Multidecadal Oscillation, a key climate indicator in the North Atlantic Ocean. The close coupling between the oceans and the cryosphere identified here should be assessed in future projections of sea-level change.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Boreas, WILEY-BLACKWELL PUBLISHING, 45(3), pp. 381-397, ISSN: 0300-9483
    Publication Date: 2017-01-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 129, pp. 296-307, ISSN: 0277-3791
    Publication Date: 2016-02-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-11
    Description: Arctic sea ice is a critical component of the climate system as it influences the albedo, heat, moisture and gas exchange between ocean and atmosphere as well as the ocean's salinity. An ideal location to study natural sea ice variability during pre-industrial times is the East Greenland Shelf that underlies the East Greenland Current (EGC), the main route of Arctic sea ice and freshwaters from the Arctic Ocean into the northern North Atlantic. Here, we present a new high-resolution biomarker record from the East Greenland Shelf (73°N), which provides new insights into the sea ice variability and accompanying phytoplankton productivity over the past 5.2 kyr. Our IP25 based sea ice reconstructions and the inferred PIP25 index do not reflect the wide-spread late Holocene Neoglacial cooling trend that follows the decreasing solar insolation pattern, which we relate to the strong influence of the polar EGC on the East Greenland Shelf and interactions with the adjacent fjord throughout the studied time interval. However, our reconstructions reveal several oscillations with increasing/decreasing sea ice concentrations that are linked to the known late Holocene climate cold/warm phases, i.e. the Roman Warm Period, Dark Ages Cold Period, Medieval Climate Anomaly and Little Ice Age. The observed changes seem to be connected to general ocean atmosphere circulation changes, possibly related to North Atlantic Oscillation and Atlantic Multidecadal Oscillation regimes. Furthermore, we identify a cyclicity of 73–74 years in sea ice algae and phytoplankton productivity over the last 1.2 kyr, which may indicate a connection to Atlantic Multidecadal Oscillation mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...