GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Berlin-Dahlem : Zuse Institute Berlin
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (12 Seiten, 10,5 MB) , Illustrationen, Diagramme
    Series Statement: ZIB-Report 216, 17
    Language: English
    Note: Literaturverzeichnis: Seite 8-10
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-19
    Description: The Plio–Pleistocene warm-temperate carbonate deposits along the SE coast of Rhodes (Greece) formed on a highly structured island ‘shelf’ during a major transgression-regression cycle, which reached bathyal depth during maximal transgression. The complex palaeobathymetry exhibits many characteristics of submarine canyons, especially of so-called ‘blind’ or ‘headless’ canyons — a canyon type, which is especially common in the modern Mediterranean. This study presents the palaeoenvironmental evolution of one of these canyons, which is today represented by the Lardos valley, eastern central Rhodes. The studied section comprises the middle Pleistocene (900–300 ka) and describes a shallowing-upward trend from bathyal to circalitoral depth. Thin fossiliferous debris flow layers document turnovers and abundance changes in fauna and floral of hard-bottom communities, which developed on the adjacent basement slopes and highs. The comparison of the obtained results with other studies from the southeastern coast of Rhodes suggests a high degree of diachroneity of lithological boundaries of these Plio–Pleistocene deposits, which can be best explained by progressive infill of small depocentres located at different altitude levels. Hence, lithological changes are interpreted to be time-transgressive from distal (low altitude) to proximal (high altitude) during transgression while time-transgressive from proximal to distal during regression. Consequently, the best chronostratigraphic correlation horizon is the surface of maximal transgression. The most probable age for this surface could be estimated at 1.1 to 0.8 Ma, 0.2–0.5 Ma younger than previous estimates. Furthermore, the current lithostratigraphic schemes for the Plio–Pleistocene deposits of southeastern Rhodes are reviewed and revised. Highlights ► The studied outcrop documents the uplift of Rhodes during the middle Pleistocene. ► The Plio–Pleistocene stratigraphy of Rhodes is reviewed and revised. ► The studied sedimentary unit is interpreted as submarine canyon deposit. ► Diachroneity of canyon deposits is most likely due to different altitudes of small depocentres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-18
    Description: Sediment subbottom profiler and multi-beam data reveal that sediment drifts evolved in various depth intervals between 420 and 650 m water depth in the eastern Golf of Mexico and its gateways. Drift evolution on the western flank of the Yucatan Strait is controlled by the northbound Loop Current down to 800 m and by a countercurrent beneath. On the northern Campeche Bank and the West Florida Slope, drifts evolved in depth of 520–600 m and 420–550 m, respectively. In both instances, the causative contour current represents a counter flow to the Loop Current. The varying depth ranges correlate with an eastward rise of the upper boundary of the Antarctic Intermediate Water. The geometry and reflection pattern of upper slope deposits strongly suggest that the causative bottom current velocities in the eastern Gulf of Mexico varied significantly in space and time. The subbottom profiler data further show peculiar stacked diffraction hyperbolae in depths between 480 and 600 m. Camera and video observations from the seafloor off western Florida imply that the diffraction hyperbolas are formed by boulders and cliffs of sedimentary rock, which are locally colonized by coldwater corals, such as Lophelia pertusa, octocorals and stylasterids.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-12
    Description: Cold-water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo-nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high-resolution reef aggradation and carbonate accumulation rates for Norwegian cold-water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold-water coral preservation within cold-water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold-water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold-water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr−1 exhibit the highest rates from cold-water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold-water corals support this age pattern for other fjords while, on the shelf, cold-water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm−2 kyr−1 exceed previous estimates of cold-water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold-water coral reefs. Furthermore, cold-water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold-water coral reefs as local, maybe regional to global, carbonate sinks
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-24
    Description: Highlights: • Cold-water coral mound formation is mainly influenced by the baffling of fine grained material within a coral framework. • Mass wasting appears to be an important mound progradation process. • Even heavily reworked sediments contain valuable information on the original mound aggradation processes. Abstract: An unconformity-bound glacial sequence (135 cm thick) of a coral-bearing sediment core collected from the flank of a cold-water coral mound in the Banda Mound Province off Mauritania was analysed. In order to study the relation between coral framework growth and its filling by hemipelagic sediments, U-series dates obtained from the cold-water coral species Lophelia pertusa were compared to 14C dates of planktonic foraminifera of the surrounding matrix sediments. The coral ages, ranging from 45.1 to 32.3 ka BP, exhibit no clear depositional trend, while on the other hand the 14C dates of the matrix sediment provide ages within a much narrower time window of 〈3000 yrs (34.6–31.8 cal ka BP), corresponding to the latest phase of the coral growth period. In addition, high-resolution computer tomography data revealed a subdivision of the investigated sediment package into three distinct parts, defined by the portion and fragmentation of corals and associated macrofauna as well as in the density of the matrix sediments. Grain size spectra obtained on the matrix sediments show a homogeneous pattern throughout the core sediment package, with minor variations. These features are interpreted as indicators of redeposition. Based on the observed structures and the dating results, the sediments were interpreted as deposits of a mass wasting event, namely a debris flow. During this event, the sediment unit must have been entirely mixed; resulting in averaging of the foraminifera ages from the whole unit and giving randomly distributed coral ages. In this context, for the first time mass wasting is proposed to be a substantial process of mound progradation by exporting material from the mound top to the flanks. Hence, it may not only be an erosional feature but also widening the base of the mound, thus allowing further vertical mound growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-25
    Description: Here we provide a detailed qualitative and quantitative insight on recent sediment composition and facies distribution of a cold-water coral (CWC) mound using the example of the Propeller Mound on the Irish continental margin (Hovland Mound Province, Porcupine Seabight). Five facies types on Propeller Mound are defined: (1) living coral framework, (2) coral rubble, (3) dropstone, (4) hardground, representing the on-mound facies, and (5) hemipelagic sediment facies, which describes the off-mound area. This facies definition is based on already published video-data recorded by Remotely Operated Vehicle (ROV), photo-data of gravity cores, box cores, and dredges from sediment surfaces as well as on the composition of the sediment fraction coarser than 125 μm, which has been analyzed on five selected box cores. Sediment compositions of the living coral framework and coral rubble facies are rather similar. Both sediment types are mainly produced by corals (34 and 35 wt%, respectively), planktonic foraminifers (22 and 29 wt%, respectively), benthic foraminifers (both 7 wt%), and molluscs (21 and 10 wt%, respectively), whereas the living coral framework characteristically features additional brachiopods (6 wt%). Hardgrounds are well-lithified coral rudstones rich in coral fragments (〉30 surf%), foraminifers, echinoderms, and bivalves. The dropstone facies and the hemipelagic sediment typically carry high amounts of lithoclasts (36 and 53 wt%, respectively) and planktonic foraminifers (35 and 32 wt%, respectively); however, their faunal diversity is low compared with the coral-dominated facies (12 and 〈2 wt% coral fragments, 7 and 6 wt% benthic foraminifers, and 4 and 0 wt% balanids). Using the maximum likelihood algorithm within ArcGIS 9.2, spatial prediction maps of the previously described mound facies are calculated over Propeller Mound and are based on mound morphology parameters, ground-truthed with the sedimentary and faunal information from box cores, photographs, and video-data. This method is tested for the first time for CWC ecosystems and provides areal estimates of the predicted facies, as well as suggests further occurrences of living coral frameworks, coral rubble, and dropstones, which are not discovered in the area yet. Thus, sediment composition analysis combined with facies prediction mapping might provide a potential new tool to estimate living CWC occurrences and sediment/facies distributions on CWC mounds, which is an important prerequisite for budget calculations and definition of marine protected areas, and which will improve our understanding of CWC mound formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-12
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-09-21
    Description: The Central and South Atlantic represents a vast ocean area and is home to a diverse range of ecosystems and species. Nevertheless, and similar to the rest of the global south, the area is comparatively understudied yet exposed to increasing levels of multisectoral pressures. To counteract this, the level of scientific exploration in the Central and South Atlantic has increased in recent years and will likely continue to do so within the context of the United Nations (UN) Decade of Ocean Science for Sustainable Development. Here, we compile the literature to investigate the distribution of previous scientific exploration of offshore (30 m+) ecosystems in the Central and South Atlantic, both within and beyond national jurisdiction, allowing us to synthesise overall patterns of biodiversity. Furthermore, through the lens of sustainable management, we have reviewed the existing anthropogenic activities and associated management measures relevant to the region. Through this exercise, we have identified key knowledge gaps and undersampled regions that represent priority areas for future research and commented on how these may be best incorporated into, or enhanced through, future management measures such as those in discussion at the UN Biodiversity Beyond National Jurisdiction negotiations. This review represents a comprehensive summary for scientists and managers alike looking to understand the key topographical, biological, and legislative features of the Central and South Atlantic.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Reefs formed by scleractinian cold-water corals represent unique biodiversity hot spots in the deep sea, preferring aphotic water depths of 200–1000 m. The distribution of the most prominent reef-building species Lophelia pertusa is controlled by various environmental factors including dissolved oxygen concentrations and temperature. Consequently, the expected ocean deoxygenation and warming triggered by human-induced global change are considered as a serious threat to cold-water coral reefs. Here, we present results on recently discovered reefs in the SE Atlantic, where L. pertusa thrives in hypoxic and rather warm waters. This sheds new light on its capability to adapt to extreme conditions, which is facilitated by high surface ocean productivity, resulting in extensive food supply. Putting our data in an Atlantic-wide perspective clearly demonstrates L. pertusa’s ability to develop population-specific adaptations, which are up to now hardly considered in assessing its present and future distributions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Highlights • Holocene cold-water coral mound formation started non-synchronous in Belgica province. • Coral mounds and slope sediments record changes in intermediate water mass dynamics. • Increased turbulent bottom currents steered slope erosion and mound formation. • Internal waves at the ENAW-MOW boundary enhance energy supply and particle flux. • Transition zone between the ENAW-MOW shifted 250 m upslope during the last deglacial. Abstract Turbulent bottom currents significantly influence the formation of cold-water coral mounds and sedimentation processes on continental slopes. Combining records from coral mounds and adjacent slope sediments therefore provide an unprecedented palaeo-archive to understand past variations of intermediate water-mass dynamics. Here, we present coral ages from coral mounds of the Belgica province (Porcupine Seabight, NE Atlantic), which indicate a non-synchronous Holocene re-activation in mound formation suggested by a temporal offset of ∼2.7 kyr between the deep (start: ∼11.3 ka BP at 950 m depth) and shallow (start: ∼8.6 ka BP at 700 m depth) mounds. A similar depth-dependent pattern is revealed in the slope sediments close to these mounds that become progressively younger from 22.1 ka BP at 990 m to 12.2 ka BP at 740 m depth (based on core-top ages). We suggest that the observed changes are the consequence of enhanced bottom-water hydrodynamics, caused by internal waves associated to the re-invigoration of the Mediterranean Outflow Water (MOW) and the development of a transition zone (TZ) between the MOW and the overlying Eastern North Atlantic Water (ENAW), which established during the last deglacial. These highly energetic conditions induced erosion adjacent to the Belgica mounds and supported the re-initiation of mound formation by increasing food and sediment fluxes. The striking depth-dependent patterns are likely linked to a shift of the ENAW-MOW-TZ, moving the level of maximum energy ∼250 m upslope since the onset of the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...