GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-02
    Description: The Amundsen Sea drainage sector of the West Antarctic Ice Sheet (WAIS) is widely regarded as a candidate for triggering potential WAIS collapse. The grounded ice sheet drains into the Amundsen Sea Embayment and is thereby buttressed by its fringing ice shelves, which have thinned at an alarming rate. Satellite-based observations additionally reveal a considerable long-term decrease in sea-ice cover in the Amundsen Sea over the last two decades although the long-term significance of this trend is unclear due to the short instrumental record since the 1970s. In this context, investigations of past sea-ice conditions are crucial for improving our understanding of the influence that sea-ice variability has on the adjacent marine environment as well as any role it plays in modulating ice shelf and ice sheet dynamics. In this study, we apply novel organic geochemical biomarker techniques to a marine sediment core from the western Amundsen Sea shelf in order to provide a valuable long-term perspective on sea-ice conditions and the retreat of the Getz Ice Shelf during the last deglaciation. We analysed a specific biomarker lipid called IPSO25 alongside a phytoplankton biomarker and sedimentological parameters and additionally applied diatom transfer functions for reconstructing palaeo sea-ice coverage. This multi-proxy data set reveals a dynamic behaviour of the Getz Ice Shelf and sea-ice cover during the deglaciation following the last ice age, with potential linkages to inter-hemispheric seesaw climate patterns. We further apply and evaluate the recently proposed PIPSO25 approach for semi-quantitative sea-ice reconstructions and discuss potential limitations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-15
    Description: Benthic foraminifera Mg/Ca is a well-established bottom water temperature (BWT) proxy used in paleoclimate studies. The relationship between Mg/Ca and BWT for numerous species has been determined using core-top and culturing studies. However, the scarcity of calcareous microfossils in Antarctic shelf sediments and poorly defined calibrations at low temperatures has limited the use of the foraminiferal Mg/Ca paleothermometer in ice proximal Antarctic sediments. Here we present paired ocean temperature and modern benthic foraminifera Mg/Ca data for three species, Trifarina angulosa, Bulimina aculeata, and Globocassidulina subglobosa, but with a particular focus on Trifarina angulosa. The core-top data from several Antarctic sectors span a BWT range of −1.7 to +1.2 °C and constrain the relationship between Mg/Ca and cold temperatures. We compare our results to published lower-latitude core-top data for species in the same or related genera, and in the case of Trifarina angulosa, produce a regional calibration. The resulting regional equation for Trifarina angulosa is Temperature (°C) = (Mg/Ca −1.14 ± 0.035)/0.069 ± 0.033). Addition of our Trifarina angulosa data to the previously published Uvigerina spp. dataset provides an alternative global calibration, although some data points appear to be offset from this relationship and are discussed. Mg-temperature relationships for Bulimina aculeata and Globocassidulina subglobosa are also combined with previously published data to produce calibration equations of Temperature (°C) = (Mg/Ca-1.04 ± 0.07)/0.099 ± 0.01 and Temperature (°C) = (Mg/Ca-0.99 ± 0.03)/0.087 ± 0.01, respectively. These refined calibrations highlight the potential utility of benthic foraminifera Mg/Ca-paleothermometry for reconstructing past BWT in Antarctic margin settings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-15
    Description: During the Late Pleistocene–Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-02
    Description: The Eocene-Oligocene Transition (~34.4–33.7 Ma) marks a major step in the long-term evolution from the greenhouse climate of the Early Palaeogene to the icehouse regime of the Late Neogene and Quaternary. However, it remains uncertain which landmasses were covered by ice sheets during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma), an interval of peak glaciation inferred from deep-sea benthic foraminifera oxygen isotope records that immediately follows the Eocene-Oligocene Transition. The scarcity of Late Eocene and Early Oligocene continental and shallow-marine records in both Arctic and Antarctic regions has prevented the reconstruction of environmental conditions and ice-sheet extent during the Early Oligocene, which is critical for assessing ice–ocean–atmosphere interactions during early stages of the Cenozoic icehouse. Here, we present the first Early Oligocene shallow-marine record from the Pacific margin of West Antarctica, recovered from the central Amundsen Sea Embayment shelf on RV Polarstern expedition PS104 at Site 21. Marine mudstones recovered at this site document the presence of a vegetated archipelago at a palaeo-latitude of 73.5°S. Pollen assemblages and organic biomarker proxies indicate a cool-temperate Nothofagus-dominated forest situated within a productive marine archipelago. No evidence for marine terminating ice was detected in the cores from Site 21, thus indicating that the West Antarctic Ice Sheet was small or entirely absent during the Early Oligocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-16
    Description: Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17−14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6−13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-25
    Description: Downcore sediment grain-size records of mineral dust (2–10 μm) can provide key insights into changes in wind strength and source-area characteristics over glacial-interglacial timescales. However, so far, little is known about glacial-interglacial changes of dust grain size in the open Southern Ocean, which are potentially associated with changes in the strength and position of the southern westerly winds. Here, we analyzed the grain-size distributions of subantarctic deep-sea sediments from the Pacific (PS75/056–1) and Atlantic (ODP Site 1090) sectors of the Southern Ocean, downwind of the major Southern Hemisphere dust source regions. Dust mean grain sizes show opposite trends in the two Southern Ocean sectors. Larger glacial grain sizes are observed in the Pacific sector, while finer glacial grain sizes are observed in the Atlantic sector. In the South Pacific, larger mean dust grain sizes parallel higher Fe fluxes during glacials. In contrast, in the South Atlantic record increased glacial Fe fluxes coincide with a decrease in glacial mean dust grain sizes consistent with some Antarctic ice core records. Our results suggest that the opposing grain-size trends are the result of different responses to glacial conditions in the sources and of changing wind and transport patterns. For the South Pacific, a possible explanation of our results could be an intensification of wind strength over Australia enabling emission of larger dust particles. This strengthening would imply a northward shift of the westerlies which facilitated the transport of dust from enhanced and/or more Australian and New Zealand sources. For the Atlantic, the decreased glacial dust grain size could be the consequence of increased glacial activity in the Patagonian Andes, generating and supplying more and finer-grained dust from the exposed continental shelf to the South Atlantic. These findings indicate that more extensive studies of wind-blown sediment properties in the Southern Ocean can provide important insights on the timing and latitudinal extent of climatic changes in the sources and variations of transport to the Southern Ocean by the westerly winds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-03
    Description: The shape of ice shelf cavities are a major source of uncertainty in understanding ice‐ocean interactions. This limits assessments of the response of the Antarctic ice sheets to climate change. Here we use vibroseis seismic reflection surveys to map the bathymetry beneath the Ekström Ice Shelf, Dronning Maud Land. The new bathymetry reveals an inland‐sloping trough, reaching depths of 1,100 m below sea level, near the current grounding line, which we attribute to erosion by palaeo‐ice streams. The trough does not cross‐cut the outer parts of the continental shelf. Conductivity‐temperature‐depth profiles within the ice shelf cavity reveal the presence of cold water at shallower depths and tidal mixing at the ice shelf margins. It is unknown if warm water can access the trough. The new bathymetry is thought to be representative of many ice shelves in Dronning Maud Land, which together regulate the ice loss from a substantial area of East Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-21
    Description: Southern Ocean westerly wind intensity and position are thought to play a crucial role in controlling glacial/interglacial CO2 changes through their impact on Antarctic upwelling intensity and the delivery of iron-rich dust that stimulates biological production during glacial periods. Sediment-core grain size records can provide key insights into changes in wind strength and source-area characteristics over glacial-interglacial timescales. However, so far, little is known about G/IG grain size changes in Southern Ocean sediments. For this study, we analyzed the grain-size distributions of two subantarctic deep sea sediments cores from the Pacific (PS75/056-1) and Atlantic (ODP Site 1090) sectors of the Southern Ocean. Dust mean grain size shows opposing trends in the two Southern Ocean sectors. Coarser glacial grain sizes are observed in the Pacific sector, while finer glacial grain-sizes are observed in the Atlantic. Our results suggest that changes in the latitudinal position of the SWW had distinct impacts on grain size distribution in the Atlantic and Pacific sectors, also likely associated with shifts in the dust source areas. These findings indicate that more extensive studies of grain-size distribution in the Southern Ocean can provide important insights on the timing and latitudinal extent of the westerly winds changes during ice ages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-01
    Description: The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...