GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 22 (2003), S. 0 
    ISSN: 1751-8369
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geographie , Geologie und Paläontologie
    Notizen: Sediment textural properties and total organic carbon (TOC) contents of three sediment cores from Maxwell Bay, King George Island, West Antarctica, record changes in Holocene glaciomarine sedimentary environments. The lower sedimentary unit is mostly composed of TOC-poor diamictons, indicating advanced coastal glacier margins and rapid iceberg discharge in proximal glaciomarine settings with limited productivity and meltwater supply. Fine-grained, TOC-rich sediments in the upper lithologic unit suggest more open water and warm conditions, leading to enhanced biological productivity due to increased nutrient-rich meltwater supply into the bay. The relationship between TOC and total sulfur (TS) indicates that the additional sulfur within the sediment has not originated from in situ pyrite formation under the reducing condition, but rather may be attributed to the detrital supply of sand-sized pyrite from the hydrothermal-origin, quartz-pyrite rocks widely distributed in King George Island. The evolution of bottom-water hydrography after deglaciation was recorded in the benthic foraminiferal stable-isotopic composition, corroborated by the TOC and lithologic changes. The Ø18O values indicate that bottom-water in Maxwell Bay was probably mixed gradually with intruding 18O-rich seawater from Bransfield Strait. In addition, the Ø13C values reflect a spatial variability in the carbon isotope distribution in Maxwell Bay, depending on marine productivity as well as terrestrial carbon fluxes by meltwater discharge. The distinct lithologic transition, dated to approximately 8000 yr BP (uncorrected) and characterized by textural and geochemical contrasts, highlights the postglacial environmental change by a major coastal glacier retreat in Maxwell Bay.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-08-10
    Beschreibung: In order to understand the growth and retreat of glaciers in response to the glacial-interglacial changes, subglacial marine sedimentary sequences have been studied extensively in the continental shelf areas of the Ross Sea. The purpose is to comprehend the glaciomarine sedimentation change on the continental slope of eastern Pennell-Iselin Bank in the Ross Sea, using three gravity cores (C1, C2, C3) and three box cores (BC1, BC2, BC3) collected from sites (RS14-1, 2, 3), respectively, across the continental slope to the eastern side of the Pennell-Iselin Bank during XXIX° (2014) PNRA expedition (Rosslope Ⅱ project). Several sedimentological (grain size, magnetic susceptibility), elemental (XRF), geochemical (biogenic opal, total organic carbon, total nitrogen, C/N ratios, CaCO3), and isotopic (δ13C and δ15N of organic matter) parameters were measured along sediment cores with AMS 14C dating of bulk sediments. Core-sediments consist mostly of hemipelagic sandy clay or silty clay with scattered IRDs (Ice-Rafted Debris). A comparison of sediment properties between box cores and the top of gravity cores reveals that the loss of sediment during sampling is trivial. Sediment colors of gravity cores alternate between brown and gray downward. Based on the variation patterns of sediment properties, sediment lithology was divided into different units (A and B), and subunits (B1 and B2). AMS 14C dates and sediment properties assign Unit A, Unit B1, and Unit B2 to interglacial, deglacial, and glacial conditions, respectively. Unit A represents the Holocene and interglacial sediments deposited mainly by the suspension settling of biogenic particles with IRDs in the open marine condition. Unit B1 reflects the deglacial sediments with an increase in IRDs showing the transition of sediment properties from Unit B2 to Unit A by the retreat of subglacial ices. Unit B2 is characterized by different sediment properties, mainly supplied by the continuously lateral melt-water plume or distal part of debris flow originating from the front of grounding floes in the subglacial continental shelf under the ice shelf during the glacial period. Thus, Unit B contains mostly reworked and eroded sediments from the continental shelf with scattered IRDs. The influence of subglacial continental shelf sedimentation in terms of melt-water transport and/or distal stage of debris flow was limited as far as to the middle slope areas (Site 2) during the deglacial and glacial periods. The deeper Site 1 remains in seasonally open marine conditions during the glacial period, due to the peaks of biogenic opal and TOC contents. Keywords: sediment property, subglacial activity, continental slope, Ross Sea
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    American Geophysical Union
    In:  EPIC3AGU, Fall Meeting 2017, Poster PP51B-1067, New Orleans, 2017-12-15-2017-12-15New Orleans, USA, American Geophysical Union
    Publikationsdatum: 2019-05-12
    Beschreibung: Establishing an accurate chronostratigraphy is essential in reconstructing paleoenvironmental changes in the Arctic Ocean. This requisition, however, has been impeded by the lack of biogenic remnants such as calcareous and siliceous microfossils, as well as alteration of paleomagnetic properties by post-depositional processes. Consequently, foundation of chronostratigraphy in the Arctic Ocean has been mostly relying on stratigraphic correlations. This study examines lithological features and physical properties of sediments of gravity core ARA03B-41GC02 collected in the Makarov Basin and correlates with previously studied cores from the western Arctic Ocean, in order to establish an age model that could eventually facilitate a precise reconstruction of paleoenvironmental changes in the western Arctic Ocean. Age control in the uppermost part was determined by AMS 14C dating of planktonic foraminifera and inter-core correlation was conducted in the upper ca. 3.8 m of the core which corresponded to MIS 15. Age constraints older than MIS 15 were treated using cyclostratigraphic model based on Mn-δ18O stack comparison, assuming that brown and high Mn concentration layers represent generally interglacial or interstadial periods. Based on our result, the core bottom corresponds to MIS 28 with an average sedimentation rate of ca. 0.5 cm/ky. The first appearance of detrital carbonate, planktonic foraminifera, and benthic foraminifera occurred during MIS 16, 11, and 7, respectively. MIS 16 is known as the coldest glacial period when δ18O of the LR04 stack first becomes heavier than 5‰; the occurrence of detrital carbonate likely transported from the Canadian Arctic indicates the initial buildup of the large ice sheets in the North America during this time. Since MIS 11 which is known as the warmest interglacial period during the late Pleistocene in the Northern Hemisphere, the appearance of planktonic foraminifera represents the warmer condition during interglacial periods in the western central Arctic Ocean. Additional geochemical and mineralogical proxies need to be conducted for better understanding of depositional environments and sediment provenance as well as transport pathways.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-03-15
    Beschreibung: During the Late Pleistocene–Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-04-01
    Beschreibung: The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-03-02
    Beschreibung: The continental margin of the Ross Sea has been consistently sensitive to the advance and retreat of the Ross Ice Sheet (RIS) between the interglacial and glacial periods. This study examines changes of the glaciomarine sedimentation on the continental slope and rise to the eastern side of Hillary Canyon in the central Ross Sea, using three gravity cores collected at increasing water depths. Besides older AMS 14C ages of bulk sediments, based on the analytical results, sediment lithology was divided into units A, B1, and B2, representing Holocene, deglacial, and glacial periods, respectively. The sedimentation rate decreased as the water depth increased, with a higher sedimentation rate in the deglacial period (unit B1) than the Holocene (unit A). Biological productivity proxies were significantly higher in glacial unit B2 than in interglacial unit A, with transitional values observed in deglacial unit B1. Biological productivity generally decreased in the Antarctic continental margin during the glacial period because of extensive sea ice coverage. The higher biogenic contents in unit B2 are primarily attributed to the increased transport of eroded and reworked shelf sediments that contained abundant biogenic components to the continental slope and rise beneath the advancing RIS. Thus, glacial sedimentation on the continental slope and rise of the central Ross Sea was generally governed by the activity of the RIS, which generated melt-water plumes and debris flows at the front of the grounding line, although the continental rise might have experienced seasonally open conditions and lateral effects due to the bottom current.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-12-14
    Beschreibung: The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.
    Beschreibung: Published
    Beschreibung: 155
    Beschreibung: 5A. Ricerche polari e paleoclima
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-02-02
    Beschreibung: The continental margin of the Ross Sea has been consistently sensitive to the advance and retreat of the Ross Ice Sheet (RIS) between the interglacial and glacial periods. This study examines changes of the glaciomarine sedimentation on the continental slope and rise to the eastern side of Hillary Canyon in the central Ross Sea, using three gravity cores collected at increasing water depths. Besides older AMS 14C ages of bulk sediments, based on the analytical results, sediment lithology was divided into units A, B1, and B2, representing Holocene, deglacial, and glacial periods, respectively. The sedimentation rate decreased as the water depth increased, with a higher sedimentation rate in the deglacial period (unit B1) than the Holocene (unit A). Biological productivity proxies were significantly higher in glacial unit B2 than in interglacial unit A, with transitional values observed in deglacial unit B1. Biological productivity generally decreased in the Antarctic continental margin during the glacial period because of extensive sea ice coverage. The higher biogenic contents in unit B2 are primarily attributed to the increased transport of eroded and reworked shelf sediments that contained abundant biogenic components to the continental slope and rise beneath the advancing RIS. Thus, glacial sedimentation on the continental slope and rise of the central Ross Sea was generally governed by the activity of the RIS, which generated melt-water plumes and debris flows at the front of the grounding line, although the continental rise might have experienced seasonally open conditions and lateral effects due to the bottom current.
    Beschreibung: Published
    Beschreibung: 106752
    Beschreibung: 1A. Geomagnetismo e Paleomagnetismo
    Beschreibung: JCR Journal
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-08-30
    Beschreibung: The Quaternary paleoenvironmental history of the Arctic Ocean remains uncertain, mainly due to the limited chronological constraints, especially beyond the 14C dating limits of accelerator mass spectrometry (AMS). The difficulty in establishing reliable chronostratigraphies is mainly attributed to low sedimentation rates and diagenetic sediment changes, resulting in very poor preservation of microfossils and altered paleomagnetic re-cords. In the absence of independent chronostratigraphic data, the age model of Pleistocene sediments from the Arctic Ocean is mainly based on cyclostratigraphy, which relates lithologic changes to climatic variability on orbital time scales. In this study, we used the Mn/Al record measured from the sediment core ARA03B-41GC retrieved from the Makarov Basin in the western Arctic Ocean. The Mn/Al variation was tuned to the global benthic oxygen isotope stack (LR04) curve under different assumptions for computational correlation. Regardless of assumptions, our computational approach led to similar ages of about 600–1,000 ka for the bottom part of the core. These age models were up to about 200 ka older than those derived from lithostratigraphic approaches. Interestingly, our new age models show that the Ca/Al peak, a proxy for a detrital input from the Laurentide Ice Sheet, first occurred about 150 ka earlier than those previously proposed. Therefore, our results suggest that the glaciers in northern North America developed more extensively at about 810 ka than in earlier glacial periods, and influenced the sedimentary and paleoceanographic environments of the Arctic Ocean much earlier than previously thought. In order to establish a more comprehensive age model, more work is needed to validate our findings with different sediment cores recovered from the western Arctic Ocean.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Kim, Sunghan; Khim, Boo-Keun; Uchida, Masao; Itaki, Takuya; Tada, Ryuji (2011): Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs. Global and Planetary Change, 79(1-2), 89-98, https://doi.org/10.1016/j.gloplacha.2011.08.004
    Publikationsdatum: 2023-01-13
    Beschreibung: Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.
    Schlagwort(e): Bering Sea; Mirai; MR06-04_PC23A; MR06-04_PC24A; MR06-04_XCO2s_r01; PC; PC23A; PC24A; Piston corer
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...