GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (6)
Document type
Years
Year
  • 1
    Publication Date: 2021-02-01
    Description: The gonyaulacean family Protoceratiaceae is characterised by five precingular plates. It currently encompasses the type genus Ceratocorys and the fossil genus Atopodinium. Fourteen strains of Ceratocorys, Pentaplacodinium, and Protoceratium were established from Malaysian and Hawaiian waters, and their morphologies were examined using light and scanning electron microscopy. Two new species, Ceratocorys malayensis sp. nov. and Pentaplacodinium usupianum sp. nov., were described from Malaysian waters. They share a Kofoidean plate formula of Po, Pt, 3?, 1a, 6??, 6C, 6S, 5???, 1p, 1????. Ceratocorys malayensis has a short first apical plate (1?) with no direct contact with the anterior sulcal plate (Sa) whereas Pentaplacodinium usupianum had a parallelogram-shaped 1? plate which often contacted the Sa plate. The genera Ceratocorys and Pentaplacodinium were emended accordingly to incorporate species bearing five or six precingular plates. The Protoceratium strain from Hawaii was morphologically similar to P. reticulatum, but differed in the lack of a ventral pore in plate 1? and slight or lack of contact between plates 1? and Sa, and is here designated as P. cf. reticulatum. The maximum-likelihood and Bayesian inference analyses based on SSU, LSU and ITS ribosomal DNA sequences revealed that these three genera are monophyletic and form a well-resolved group. Our results support Protoceratium and Pentaplacodinium as members of the family Protoceratiaceae, characterised by the presence of one anterior intercalary plate. Seven strains of Protoceratium cf. reticulatum, Ceratocorys malayensis and Pentaplacodinium usupianum were examined for yessotoxin production by LC-MS/MS but none produced a detectable amount of toxin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-07
    Description: Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell-1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-01
    Description: Gymnodinium catenatum is able to produce paralytic shellfish toxins (PSTs) and was responsible for a massive bloom in the Taiwan Strait, East China Sea, in June 2017, which resulted in serious human poisoning and economic losses. To understand the origin of the bloom and determine the potential for blooms in subsequent years, water and sediment samples collected in the Taiwan Strait from 2016 to 2019 were analyzed for cells and cysts using light microscopy (LM) and/or quantitative polymerase chain reaction (qPCR). The morphology of both cells and cysts from the field and cultures was examined with LM and scanning electron microscopy (SEM). Large subunit (LSU) and/or internal transcribed spacer (ITS)-5.8S rRNA gene sequences were obtained in 13 isolates from bloom samples and five strains from cysts. In addition, cells of strains TIO523 and GCLY02 (from the Taiwan Strait and Yellow Sea of China, respectively) were subjected to growth experiments, and cysts from the field were used for germination experiments under various temperatures. Our strains shared identical LSU and ITS-5.8S rRNA gene sequences with those from other parts of the world, and therefore belonged to a global population. A low abundance of G. catenatum cells were detected during most of the sampling period, but a small bloom was encountered in Quanzhou on June 8, 2018. Few cysts were observed in 2016 but a marked increase was observed after the bloom in 2017, with a highest density of 689 cysts cm−3. Cysts germinated at temperatures between 14 and 23 °C with a final germination rate over 93%. Strains TIO523 and GCLY02 displayed growth at temperatures between 17 and 26 °C and 14 and 26 °C, respectively, with both strains displaying the highest growth rate of ca. 0.5 divisions d–1 at 23 °C. The PSTs of the three strains and cysts from the sediments were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). All strains were able to produce PSTs, which were dominated by N-sulfocarbamoyl C toxins (C1/2, 53.0–143.5 pg cell−1) and decarbamoyl gonyautoxins (dcGTX2/3, 26.7–52.1 pg cell−1), although they were not detected in cysts. However, hydroxybenzoyl (GC) toxins were detected in both cells and cysts. Our results suggested that the population in the Taiwan Strait belonged to a warm water ecotype and has a unique toxin profile. Our results also suggested that the persistence of cells in the water column may have initiated the bloom.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-23
    Description: Azaspiracids (AZA) are lipophilic marine biotoxins associated with shellfish poisoning which are produced by some species of Amphidomataceae. Diversity and global biogeography of this family are still poorly known. In summer 2017 plankton samples were collected from the central Labrador Sea and western Greenland coast from 64° N (Gothaab Fjord) to 75° N for the presence of Amphidomataceae and AZA. In the central Labrador Sea, light microscopy revealed small Azadinium-like cells (9200 cells l−1). Clonal strains established from plankton samples and scanning electron microscopy of fixed plankton samples revealed at least eight species of Amphidomataceae: Azadinium obesum, Az. trinitatum, Az. dexteroporum, Az. spinosum, Az. polongum, Amphidoma languida, Azadinium spec., and a new species described here as Azadinium perforatum sp. nov. The new species differed from other Azadinium species by the presence of thecal pores on the pore plate. All samples, including cultured strains, filtered seawater samples, and solid phase adsorption toxin tracking (SPATT) samplers deployed during the expedition in a continuous water-sampling system (FerryBox), were negative for AZA. DNA samples and PCR assays were positive for Amphidomataceae from most stations, whereas species-specific assays for three toxigenic species were rarely positive (two stations for Az. poporum, one station for Am. languida). The results highlight the presence of Amphidomataceae in the area but the lack of toxins and low abundance of toxigenic species currently indicate a low risk of toxic Amphidomataceae blooms in Arctic coastal waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-03
    Description: The dinoflagellate Alexandrium pacificum can produce paralytic shellfish toxins and is mainly distributed in the Pacific. Blooms of A. pacificum have been frequently reported in offshore areas of the East China Sea, but not along the coast. To investigate the bloom dynamics of A. pacificum and their potential origins in the Taiwan Strait, we performed intensive sampling of both water and sediments from 2017 to 2020. Ellipsoidal cysts were identified as A. pacificum and enumerated based on microscopic observation. Their abundances were quite low but there was a maximum of 9.6 cysts cm−3 in the sediment near the Minjiang River estuary in May 2020, consistent with the high cell abundance in the water column in this area. Cells of A. pacificum were examined using a quantitative polymerase chain reaction, and they appeared to be persistent in the water column across the seasons. High densities of A. pacificum (103 cells L−1) were observed near the Jiulongjiang and Minjiang River estuary in early May 2020, where high nutrients (dissolved inorganic nitrogen and phosphate), and relatively low temperatures (20–21 ◦C) were also recorded. Strains isolated from the East and South China Sea exhibited the highest division rate (0.63 and 0.93 divisions d−1) at 20 and 23 ◦C, respectively, but the strain from the Yellow Sea showed the highest division (0.40 divisions d−1) at 17–23 ◦C. Strains from the East and South China Sea shared similar toxin profiles dominated by the N-sulfocarbamoyl toxins C1/2, but the strain from the Yellow Sea predominantly produced the carbamoyl toxins GTX1/4 and no C1/2. Our results suggest that both cyst germination and persistent cells in the water column might contribute to the bloom formation in the Taiwan Strait. Our results also indicate that the East and South China Sea populations are connected genetically through similar toxin formation but separated from the Yellow Sea population geographically.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-22
    Description: Shellfish contamination with azaspiracids (AZA), which are lipophilic marine biotoxins produced by marine dinoflagellates, is a major and recurrent problem for the Irish shellfish industry. AZA are produced by certain species of Amphidomataceae, but the species diversity of this group of microalgae in Irish waters is poorly known. Here we present a morphological and molecular characterization of multiple new strains of non-toxigenic Azadinium isolated on an oceanographic survey in 2018. A lack of AZA production for all strains presented here was demonstrated by LC-MS/ MS analysis. One strain of Azadinium caudatum var. margalefii (first strain for the area) confirmed nontoxigenicity of Atlantic populations of this species. One strain designated as Azadinium cf. zhuanum was similar to Az. zhuanum described from China but differed from the type strain in nucleus position, by the dominant number of apical plates, and by significant differences in rRNA gene sequences. Finally, two new non-toxigenic Azadinium species are described from the North East Atlantic: Azadinium galwayense sp. nov. and Azadinium perfusorium sp. nov. Azadinium galwayense differed from other Azadinium by a characteristic combination regarding presence and location of the ventral pore (vp; on the right side of the pore plate), of a pyrenoid (located in the episome), and by a pentagonal shape of the median anterior intercalary plate 2a, and lack of contact between plates 1´´ and 1a. Azadinium perfusorium shared the same vp position as Az. galwayense and differed by a characteristic combination of a pyrenoid located in the hyposome, a tetragonal shape of plate 2a, and a relatively large size of the two lateral anterior intercalary plates. Molecular phylogeny confirmed the distinctiveness of these two new species and their placement in Azadinium. The present findings significantly increased knowledge on the diversity of Azadinium species in the North East Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...