GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (12)
  • 1
    Publication Date: 2021-08-05
    Description: Paleoceanographic evidence commonly indicates that Last Glacial Maximum surface temperatures in the Japan Sea were comparable to modern conditions, in striking difference to colder neighboring regions. Here, based on a core from the central Japan Sea, our results show similar UK′37‐ and TEXL86‐derived temperatures between 24.7 and 16.3 ka BP, followed by an abrupt divergence at ~16.3 ka BP and a weakening of divergence after ~8.7 ka BP. We attribute this process to a highly stratified glacial upper ocean controlled by the East Asian Summer Monsoon, increasing thermal gradient between surface and subsurface layers during the deglaciation and the intrusion of Tsushima Warm Current since the mid‐Holocene, respectively. Therefore, we suggest that threshold‐like changes in upper‐ocean temperatures linked to sea level rise and monsoon dynamics, rather than just sea surface temperatures, play a critical role in shaping the thermal and ventilation history of this NW Pacific marginal sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-03
    Description: The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50°E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-01
    Description: A concept for an interdisciplinary summer school for “multiscale processes in oceans and the atmosphere” is presented. It aims to deepen students’ understanding of scientific issues as well as their experience in multicultural communication. The theme covers climate evolution, which is partially dominated by far-reaching anthropogenic changes and their possible consequences on the Earth’s system. An integrated approach helps to change rigid subject-specific mindsets among faculties and students and across cultures, so as to broaden their horizons in both research and life. Research has shown, however, that the development of intercultural competence in students does not happen automatically but needs to be fostered and supported. Therefore, a primary goal is also to provide young researchers from several countries (mainly China and Germany) with the opportunity to gain more indepth knowledge on research in Germany, to be exposed to scientific culture, and thus to prepare for foreign research visits either during the PhD phase or as postdoctoral fellows, supporting the internationalization of education and opportunities in marine sciences. Finally, the students have the chance to further develop their scientific profiles by attending scientific talks, lab exercises, and excursions and by combining rigorous scientific disciplines with the awareness of multidisciplinary issues related to the topic of global climate change
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-09-02
    Description: In this study, organic geochemical analyses of two sediment cores (BL16 and LV63–23) recovered from the western Bering Sea were carried out to examine the sea-ice variability and its relationship to phytoplankton community evolution over the past century. Bulk stable organic carbon isotopic composition (δ13CTOC) showed pronounced depletion on the northern shelf since the late 1970s, indicating greater terrigenous organic matter (OM) under warming during recent decades. Variation in sedimentary OM in the southward core was closely associated with marine primary productivity and regional deposition processes. Arctic sea-ice proxy IP25 throughout the two cores with different temporal profile patterns demonstrated sea-ice presence with the spatiotemporal variability across the study area over the past century. The phytoplankton marker-IP25 index (PIP25), a proxy for estimating semi-quantitatively sea-ice concentrations, reflected a decreased sea-ice cover with more distinct interannual fluctuations between 0.7 and 0.2 (especially in core BL16) after the late 1970s, coinciding with the recent warming scenario. Increased concentrations of phytoplankton biomarkers (brassicasterol and dinosterol) and their ratios as well as the PIP25 record in core BL16 indicated a synchronous variability of reduced sea-ice cover with the enhancement of phytoplankton productivity since the late 1970s. These results suggested a coupled interaction of the sea-ice condition and planktonic ecosystem in the north Bering shelf. Our results also revealed recent (since the 2000s) spatial heterogeneity in sea-ice coverage between the northern and southern parts of the Bering Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-06
    Description: Millennial scale variations of terrigenous provenance in marine realm are closely related to regional environment and climate changes. Therefore, a wealth of information of past environment and climate can be constrained via fingerprinting sediment provenance. The Sea of Japan is a unique marginal sea in the North Pacific due to its high sill and distinct thermohaline circulation. The modern hydrography in the Sea of Japan is mainly affected by the East Asian Monsoon and Tsushima Warm Current, one branch of the Kuroshio Current. The Sea of Japan communicates with neighboring seas through four shallow and narrow straits, indicating great effects of global eustatic sea level change on its environment over glacial-interglacial cycles. Here we examine the terrigenous provenance in fine-grained fraction (〈63 μm) of core KCES1, located near one end of the Tsushima Strait of the Sea of Japan over the last 48 ka, using radiogenic isotopes of strontium (Sr) and neodymium (Nd). Our data suggest that the terrigenous provenance in core KCES1 was mainly derived from the Yangtze River after 7 ka and a mixture of Yangtze and Yellow Rivers during the last glacial and deglacial periods. Notably, pronounced negative excursions of εNd values at HS1 were attributed to minor additions of unradiogenic Nd contribution from China-Korea cratonic hinterland. A binary mixing model further reveals that 〉85% terrigenous material is derived from the Yangtze and Yellow Rivers over the last 48 ka. Moreover, abrupt variations in sediment provenance occurred at ~18 ka and ~ 7 ka, which coincide with variations in oceanic surface circulation and deep ventilation recorded in the Sea of Japan. We suggest that paleo-Tsushima Warm Current invaded into the Sea of Japan with reopening of the Tsushima Strait at HS1 and the Tsushima Warm Current substantially entered the Sea of Japan after 7 ka due to intensified Kuroshio Current and rising eustatic sea level. The inflow of Tsushima Warm Current gives rise to a range of changes in surface hydrography, deep ventilation, ecological communities and productivity and sediment texture. The combination of fluxes of paleo-rivers and the intensity of Kuroshio Current, which are closely tied to the eustatic sea level and the East Asian Monsoon, plays a key role in controlling the variations in sediment provenance in the Ulleung Basin. Our study provides unique insight into the tight coupling between changes in sediment provenance and oceanic environment over the last 48 ka in the Sea of Japan.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 16(6), pp. 2221-2238, ISSN: 1814-9324
    Publication Date: 2021-07-01
    Description: A compilation of the published literature on dust content in terrestrial and marine sediment cores was synchronized with pollen data and speleothem growth phases on the Greenland Ice Core Chronology 2005 (GICC05) time axis. Aridity patterns for eight key areas of the global climate system have been reconstructed for the last 60 000 years. These records have different time resolutions and different dating methods, i.e. different types of stratigraphy. Nevertheless, all regions analysed in this study show humid conditions during early Marine Isotope Stage 3 (MIS3) and the early Holocene or deglaciation, but not always at the same time. Such discrepancies have been interpreted as regional effects, although stratigraphic uncertainties may affect some of the proposed interpretations. In comparison, most of the MIS2 interval becomes arid in all of the Northern Hemisphere records, but the peak arid conditions of the Last Glacial Maximum (LGM) and Heinrich event 1 differ in duration and intensity among regions. In addition, we also compare the aridity synthesis with modelling results using a global climate model (GCM). Indeed, geological archives and GCMs show agreement on the aridity pattern for the Holocene or deglaciation, for the LGM and for late MIS3.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    IOP PUBLISHING LTD
    In:  EPIC3Environmental Research Letters, IOP PUBLISHING LTD, 16(3), pp. 034008, ISSN: 1748-9326
    Publication Date: 2021-03-08
    Description: Widespread mismatches between proxy-based and modelling studies of the Last Glacial Maximum (LGM) has limited better understanding about interglacial-glacial climate change. In this study, we incorporate non-breaking surface waves (NBW) induced mixing into an ocean model to assess the potential role of waves in changing a simulation of LGM upper oceans. Our results show a substantial 40 m subsurface warming introduced by surface waves in LGM summer, with larger magnitudes relative to the present-day ocean. At the ocean surface, according to the comparison between the proxy data and our simulations, the incorporation of the surface wave process into models can potentially decrease the model-data discrepancy for the LGM ocean. Therefore, our findings suggest that the inclusion of NBW is helpful in simulating glacial oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-12
    Description: Recent evidence shows that wind-driven ocean currents, like the western boundary currents, are strongly affected by global warming. However, due to insufficient observations both on temporal and spatial scales, the impact of climate change on large-scale ocean gyres is still not clear. Here, based on satellite observations of sea surface height and sea surface temperature, we find a consistent poleward shift of the major ocean gyres. Due to strong natural variability, most of the observed ocean gyre shifts are not statistically significant, implying that natural variations may contribute to the observed trends. However, climate model simulations forced with increasing greenhouse gases suggest that the observed shift is most likely to be a response of global warming. The displacement of ocean gyres, which is coupled with the poleward shift of extratropical atmospheric circulation, has broad impacts on ocean heat transport, regional sea level rise, and coastal ocean circulation.
    Keywords: 551.46 ; ocean gyre ; climate change ; poleward shift ; global warming ; ocean circulation ; sea level rise
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-09-17
    Description: Recent evidence shows that wind‐driven ocean currents, like the western boundary currents, are strongly affected by global warming. However, due to insufficient observations both on temporal and spatial scales, the impact of climate change on large‐scale ocean gyres is still not clear. Here, based on satellite observations of sea surface height and sea surface temperature, we find a consistent poleward shift of the major ocean gyres. Due to strong natural variability, most of the observed ocean gyre shifts are not statistically significant, implying that natural variations may contribute to the observed trends. However, climate model simulations forced with increasing greenhouse gases suggest that the observed shift is most likely to be a response of global warming. The displacement of ocean gyres, which is coupled with the poleward shift of extratropical atmospheric circulation, has broad impacts on ocean heat transport, regional sea level rise, and coastal ocean circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...