GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (56)
  • 2016  (56)
Document type
Keywords
Language
Years
  • 2015-2019  (56)
Year
  • 1
    Online Resource
    Online Resource
    [Bremen] : [Universität Bremen, MARUM - Zentrum für Marine Umweltwissenschaften]
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (26 Seiten, 275,47 KB) , Illustrationen, Diagramme
    Language: German
    Note: Autoren und durchführende Institutionen der Teilprojekte den Berichtsblättern entnommen , Förderkennzeichen BMBF 03G0840A/B. - Verbund-Nummer 01144766 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-15
    Description: In this study, we obtained concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in a one-year time-series of sinking particles collected with a sediment trap moored from December 2001 to November 2002 at 2200 m water depth south of Java in the eastern Indian Ocean. We investigate the seasonality of alkenone and GDGT fluxes as well as the potential habitat depth of the Thaumarchaeota producing the GDGTs entrained in sinking particles. The alkenone flux shows a pronounced seasonality and ranges from 1 µg m-2 d-1 to 35 µg m-2 d-1. The highest alkenone flux is observed in late September during the Southeast monsoon, coincident with high total organic carbon fluxes as well as high net primary productivity. Flux-weighted mean temperature for the high flux period using the alkenone-based sea-surface temperature (SST) index UK’37 is 26.7°C, which is similar to satellite-derived Southeast (SE) monsoon SST (26.4°C). The GDGT flux displays a weaker seasonality than that of the alkenones. It is elevated during the SE monsoon period compared to the Northwest (NW) monsoon and intermonsoon periods (approximately 2.5 times), which is probably related to seasonal variation of the abundance of Thaumarchaeota, or to enhanced export of GDGTs by aggregation with sinking phytoplankton detritus. Flux-weighted mean temperature inferred from the GDGT-based TEXH86 index is 26.2°C, which is 1.8 °C lower than mean annual (ma) SST but similar to SE monsoon SST. As the time series of TEXH86 temperature estimates, however, does not record a strong seasonal amplitude, we infer that TEXH86 reflects ma upper thermocline temperature at approximately 50 m water depth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-21
    Description: Arctic rivers are known to export large quantities of carbon by discharge of dissolved and particulate organic carbon (DOC, POC), and in a warming and progressively moister Arctic, these exports may increase resulting in a reduction of arctic continental carbon stocks. These rivers have highly variable discharge rates with a pronounced maximum during the spring freshet associated with highest concentrations of DOC and POC. Most studies investigating the isotopic composition and quality of carbon exported by Arctic rivers rely on samples taken in summer during base flow, which is due to the logistical challenges associated with sampling in the remote Arctic permafrost regions. Here we present a record of δ13C and ∆14C of DOC and POC collected between late May during the freshet and late August 2014 in the Lena River Delta. POC ∆14C shows an initial trend towards older values in the spring samples, which is reversed in summer, associated with a shift towards more depleted δ13C values. We interpret this aging trend as reflecting progressive thawing throughout the ice-free season, resulting in mobilization of progressively older carbon from deeper thawed layers. The summer reversal indicates admixture of aquatic organic matter. DOC ∆14C, in contrast, remains at relatively modern levels with rather constant δ13C values throughout the sampling period. We furthermore analysed the biomarker composition of Lena Delta particulate OM collected in spring and summer. From spring to summer, we observe trends in abundance of individual leaf-wax derived biomarkers indicating higher abundance of algal biomass in the summer particles. Trends in soil microbial biomarkers and compound-specific δD of leaf-wax lipids suggest a shift in sources towards higher contributions from the southern catchment in summer. DOC composition investigated with FT-ICR-MS changes from spring with higher abundances of compounds with high H/C and low O/C ratios to late summer, when fewer compounds were found. Our results illustrate the seasonal variability in composition and sources of organic matter discharged by the Lena River. Paired with the strong seassonality of the hydrograph, this implies that total annual discharge of organic matter contains a disproportionally high contribution from the northern part of the catchment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Global and Planetary Change, ELSEVIER SCIENCE BV, 146, pp. 53-66, ISSN: 0921-8181
    Publication Date: 2016-10-19
    Description: The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, δ13CTOC, δ15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18–17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-14
    Description: Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers.Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-01
    Description: When using biomarkers such as n-alkanes as tools for paleo-environmental reconstructions, it is imperative to determine their specific sources for each setting. Towards that goal, we analysed a set of various potential organic matter (OM) sources such as aquatic and terrestrial plants, dust, and soils from Laguna Potrok Aike (LPA) and surrounding areas in Southern Patagonia. We determined chain length distributions and hydrogen (δD) and carbon (δ13C) isotopic compositions of n-alkanes of different OM sources in order to quantify their relative contributions to lake sediments. Our results reveal that mid-chain n-alkane, n-C23, is predominantly produced by submerged aquatic plants, whereas long-chain n-alkanes (n-C29 to n-C31) are derived from various terrestrial sources. We estimated their relative contributions to the sediment using two approaches, i.e. based on the n-alkane distributions and their δD and δ13C values. Both approaches result in similar estimates of aquatic and terrestrial contributions for mid- and long-chain n-alkanes to the sediment. 62-73% of the mid-chain n-C23 alkanes originate from aquatic sources while 66-77% of the long-chain n-alkanes originate from dust and 14-30% from terrestrial plants. Our study shows that mid-chain n-alkanes such as n-C23 alkane in LPA are derived mainly from aquatic macrophytes and thus have the potential to record changes in lake-water isotopic composition. In contrast, the n-C29 alkane reflects the isotopic signal of various terrestrial sources from Southern Patagonia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 9 (2016): 687-690, doi:10.1038/ngeo2778.
    Description: The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. While elevated ages in fluvially-transported organic matter are usually explained by erosion of soils and sediments deposits it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and rapid carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River in conjunction with molecular markers for methane-producing land cover reflecting wetland extent. We find that the Congo River has been discharging aged organic matter for several thousand years with apparently increasing ages from the Mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from atmospheric nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter we infer that this process may cause a profound direct climate feedback currently underestimated in carbon cycle assessments.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft (grants SCHN 621/3-3, RU 458/29-3, GR 1845/2-3, SCHE 903/1), the US National Science Foundation (grant OCE-0137005), a Starting Grant from the European Research Council (ERC) awarded to HMT for project AMOPROX (No. 258734) and grants ICM-NC120066 and FONDAP15110009 to RDP-H. This work was supported by the DFG Research Center/Cluster of Excellence ‘The Ocean in the Earth System’ at MARUM – Center for Marine Environmental Sciences, University of Bremen.
    Description: 2017-02-15
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 184 (2016): 20-40, doi:10.1016/j.gca.2016.04.003.
    Description: The concentrations, distributions, and stable carbon isotopes (δ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and δ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25 – C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in δ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52 – 0.94). In contrast, plant-dominated n-alcohols (C26 – C36) and n-alkanoic acids (C26 – C36) exhibit stronger positive correlations (r = 0.70 – 0.99) between homologue concentrations and depleted δ13C values (individual homologues average ≤ -31.3‰ and -30.8‰, respectively), with lower δ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal δ13C variability throughout the time-series (1σ ≤ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19 – 58% of total plant-wax lipids) and n-alkanoic acids (26 – 76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5 – 16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
    Description: J.D.H. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 2012126152. V.V.G. was partly supported by the US National Science Foundation, grants OCE-0851015 and OCE-0928582. Parts of this work were supported by the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System” at MARUM - Center for Marine Environmental Science, University of Bremen.
    Description: 2017-04-08
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Castañeda, Isla S; Schouten, Stefan; Pätzold, Jürgen; Lucassen, Friedrich; Kasemann, Simone A; Kuhlmann, Holger; Schefuß, Enno (2016): Hydroclimate variability in the Nile River Basin during the past 28,000 years. Earth and Planetary Science Letters, 438, 47-56, https://doi.org/10.1016/j.epsl.2015.12.014
    Publication Date: 2023-03-03
    Description: It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Vogts, Angela; Badewien, Tanja; Rullkötter, Jürgen; Schefuß, Enno (2016): Near-constant apparent hydrogen isotope fractionation between leaf wax n-alkanes and precipitation in tropical regions: Evidence from a marine sediment transect off SW Africa. Organic Geochemistry, 96, 18-27, https://doi.org/10.1016/j.orggeochem.2016.03.003
    Publication Date: 2023-03-03
    Description: A transect of marine surface sediment samples from 1° N to 28° S off southwest Africa was analysed to verify the application of hydrogen isotope compositions of terrestrial plant-wax n-alkanes preserved in ocean sediments as a proxy for continental hydrological conditions. Conditions on the adjacent continent range from humid evergreen forests to deciduous forests, wood- and shrub land and further to arid grasslands and deserts. The hydrogen isotope values for the dominant n-alkane homologues (C29, C31 and C33) vary from -123 per mil to -141 per mil VSMOW and correlate with the modelled hydrogen isotope composition of mean annual and growing season precipitation of postulated continental source areas (r up to 0.8, p 〈 0.01). The apparent hydrogen isotope fractionation between alkanes and mean annual precipitation is remarkably uniform (-109 per mil on average, Sigma 〈= 5 per mil, n = 27). Potentially, effects of aridity on the apparent hydrogen isotope fractionation are concealed by the contribution of different plants (C3 dicotyledons vs C4 grasses). Thus, isotope ratios of leaf wax n-alkanes preserved in ocean margin sediments in these and similar tropical regions may be directly converted to dD ratios of ancient precipitation by employing a constant hydrogen isotope fractionation.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...