GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Online Resource
    Online Resource
    Lausanne : Frontiers Media | Kiel : Universitätsbibliothek
    In: Frontiers in Earth Science, 7 (2019), 304, 2296-6463
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (19 Seiten) , Illustrationen
    ISSN: 2296-6463
    Language: English
    Note: DOI der ursprünglichen Veröffentlichung: 10.3389/feart.2019.00304
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Oceanic oxygen decline due to anthropogenic climate change is a matter of growing concern. A quantitative oxygen proxy is highly desirable in order to identify and monitor recent dynamics as well as to reconstruct pre-Anthropocene changes in amplitude and extension of oxygen depletion. Geochemical proxies like foraminiferal I/Ca ratios seem to be promising redox proxies. Nevertheless, recent studies on microanalyses of benthic foraminiferal I/Ca ratios at the Peruvian oxygen minimum zone (OMZ) measured with secondary-ion mass spectrometry (SIMS) revealed a possible association of iodine with organic accumulations within the test. Here, we present a new study on the micro-distribution of nitrogen, sulfur, and iodine within the test walls of Uvigerina striata from the Peruvian OMZ measured with Nano-SIMS. A quantification of the foraminiferal I/Ca ratios from our NanoSIMS study is in good agreement with quantitative results from a previous SIMS study. Additionally, we compared uncleaned specimens with specimens that have been treated with an oxidative cleaning procedure. Both nitrogen and sulfur, which are used as tracer for organic matter, show a patchy distribution within the test walls of the uncleaned specimens and a statistically significant correlation with the iodine distribution. This patchy organic-rich phase has a different geochemical signature than the pristine calcitic parts of the test and another phase that shows a banding-like structure and that is characterized by a strong sulfur enrichment. All three elements, sulfur, nitrogen, and iodine, are strongly depleted in the cleaned specimens, even within the massive parts of the test walls that lack the connection with the test pores. These results indicate that the organic parts of the test walls are located inside a microporous framework within the foraminiferal calcite. This has to be considered in the interpretation of geochemical proxies on foraminiferal calcite, especially for microanalytical methods, since the chemical signature of these organic parts likely alters some element-to-calcium ratios within the foraminiferal test.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: While burial diagenetic processes of tropical corals are well investigated, current knowledge about factors initiating early diagenesis remains fragmentary. In the present study, we focus on recent Porites microatolls, growing in the intertidal zone. This growth form represents a model organism for elevated sea surface temperatures (SSTs) and provides important but rare archives for changes close to the seawater/atmosphere interface with exceptional precision on sea level reconstruction. As other coral growth forms, microatolls are prone to the colonization by endolithic green algae. In this case, the algae can facilitate earliest diagenetic alteration of the coral skeleton. Algae metabolic activity not only results in secondary coral porosity due to boring activities, but may also initiate reprecipitation of secondary aragonite within coral pore space, a process not exclusively restricted to microatoll settings. In the samples of this initial study, we quantified a mass transfer from primary to secondary aragonite of around 4% within endolithic green algae bands. Using δ18O, δ13C, Sr/Ca, U/Ca, Mg/Ca, and Li/Mg systematics suggests that the secondary aragonite precipitation followed abiotic precipitation principles. According to their individual distribution coefficients, the different isotope and element ratios showed variable sensitivity to the presence of secondary aragonite in bulk samples, with implications for microatoll-based SST reconstructions. The secondary precipitates formed on an organic template, presumably originating from endolithic green algae activity. Based on laboratory experiments with the green algae Ostreobium quekettii, we propose a conceptual model that secondary aragonite formation is potentially accelerated by an active intracellular calcium transport through the algal thallus from the location of dissolution into coral pore spaces. The combined high-resolution imaging and geochemical approach applied in this study shows that endolithic algae can possibly act as a main driver for earliest diagenesis of coral aragonite starting already during a coral’s life span.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-03
    Keywords: Aridity index; Calculated; Center for Marine Environmental Sciences; Distance; Evapotranspiration, potential; LATITUDE; LONGITUDE; MARUM; Precipitation, annual mean; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 390 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-03
    Keywords: Aridity index; Center for Marine Environmental Sciences; Evapotranspiration, potential; LATITUDE; LONGITUDE; MARUM; Precipitation, annual mean; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 304 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Vogts, Angela; Badewien, Tanja; Rullkötter, Jürgen; Schefuß, Enno (2016): Near-constant apparent hydrogen isotope fractionation between leaf wax n-alkanes and precipitation in tropical regions: Evidence from a marine sediment transect off SW Africa. Organic Geochemistry, 96, 18-27, https://doi.org/10.1016/j.orggeochem.2016.03.003
    Publication Date: 2023-03-03
    Description: A transect of marine surface sediment samples from 1° N to 28° S off southwest Africa was analysed to verify the application of hydrogen isotope compositions of terrestrial plant-wax n-alkanes preserved in ocean sediments as a proxy for continental hydrological conditions. Conditions on the adjacent continent range from humid evergreen forests to deciduous forests, wood- and shrub land and further to arid grasslands and deserts. The hydrogen isotope values for the dominant n-alkane homologues (C29, C31 and C33) vary from -123 per mil to -141 per mil VSMOW and correlate with the modelled hydrogen isotope composition of mean annual and growing season precipitation of postulated continental source areas (r up to 0.8, p 〈 0.01). The apparent hydrogen isotope fractionation between alkanes and mean annual precipitation is remarkably uniform (-109 per mil on average, Sigma 〈= 5 per mil, n = 27). Potentially, effects of aridity on the apparent hydrogen isotope fractionation are concealed by the contribution of different plants (C3 dicotyledons vs C4 grasses). Thus, isotope ratios of leaf wax n-alkanes preserved in ocean margin sediments in these and similar tropical regions may be directly converted to dD ratios of ancient precipitation by employing a constant hydrogen isotope fractionation.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Vogts, Angela; Schefuß, Enno; Badewien, Tanja; Rullkötter, Jürgen (2012): n-Alkane parameters from a deep sea sediment transect off Southwest Africa reflect continental vegetation and climate conditions. Organic Geochemistry, 47, 109-119, https://doi.org/10.1016/j.orggeochem.2012.03.011
    Publication Date: 2023-03-03
    Description: An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29-33 weighted mean average d13C values from -33 per mil near the equator to around -26 per mil further south. Additionally, C25-35n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Badewien, Tanja; Vogts, Angela; Dupont, Lydie M; Rullkötter, Jürgen (2015): Influence of Late Pleistocene and Holocene climate on vegetation distributions in southwest Africa elucidated from sedimentary n-alkanes - Differences between 12°S and 20°S. Quaternary Science Reviews, 125, 160-171, https://doi.org/10.1016/j.quascirev.2015.08.004
    Publication Date: 2023-05-12
    Description: Global and local climatic forcing, e.g. concentration of atmospheric CO2 or insolation, influence the distribution of C3 and C4 plants in southwest Africa. C4 plants dominate in more arid and warmer areas and are favoured by lower pCO2 levels. Several studies have assessed past and present continental vegetation by the analysis of terrestrial n-alkanes in near-coastal deep sea sediments using single samples or a small number of samples from a given climatic stage. The objectives of this study were to evaluate vegetation changes in southwest Africa with regard to climatic changes during the Late Pleistocene and the Holocene and to elucidate the potential of single sample simplifications. We analysed two sediment cores at high resolution, altogether ca. 240 samples, from the Southeast Atlantic Ocean (20°S and 12°S) covering the time spans of 18 to 1 ka and 56 to 2 ka, respectively. Our results for 20°S showed marginally decreasing C4 plant domination (of ca. 5%) during deglaciation based on average chain length (ACL27-33 values) and carbon isotopic composition of the C31 and C33 n-alkanes. Values for single samples from 18 ka and the Holocene overlap and, thus, are not significantly representative of the climatic stages they derive from. In contrast, at 12°S the n-alkane parameters show a clear difference of plant type for the Late Pleistocene (C4 plant domination, 66% C4 on average) and the Holocene (C3 plant domination, 40% C4 on average). During deglaciation vegetation change highly correlates with the increase in pCO2 (r² = 0.91). Short-term climatic events such as Heinrich Stadials or Antarctic warming periods are not reflected by vegetation changes in the catchment area. Instead, smaller vegetation fluctuations during the Late Pleistocene occur in accordance with local variations of insolation.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-03
    Keywords: Aridity index; Center for Marine Environmental Sciences; Evapotranspiration, potential; LATITUDE; LONGITUDE; MARUM; Precipitation, annual mean; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 304 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-03
    Keywords: Aridity index; Center for Marine Environmental Sciences; Confidence interval; Distance; ELEVATION; Evapotranspiration, potential; LATITUDE; LONGITUDE; MARUM; Precipitation, annual mean; Temperature, annual mean; δ Deuterium
    Type: Dataset
    Format: text/tab-separated-values, 546 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...