GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (279 pages)
    ISBN: 9781000683288
    Series Statement: Novel Biotechnological Applications for Waste to Value Conversion Ser.
    Language: English
    Note: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Notes on the Editor -- List of Contributors -- List of Abbreviations -- Chapter 1: Fundamentals of Enzyme-based Biorefinery for Conversion of Waste to Value-added Products -- 1.1 Introduction -- 1.2 Sources and Various Types of Waste -- 1.2.1 Wastewater -- 1.2.2 Food Waste -- 1.2.3 Agricultural Waste -- 1.3 Enzymes Involved and their Role in Biorefinery -- 1.3.1 Cellulases -- 1.3.2 Hemicellulases -- 1.3.3 Amylases -- 1.3.4 Lignocellulolytic Enzymes -- 1.3.5 Pectinolytic Enzymes -- 1.3.6 Lipases -- 1.3.7 Proteases -- 1.4 Configurations of Waste Biorefineries -- 1.4.1 Waste Biorefineries with Multiple Platforms -- 1.4.2 Waste Biorefinery Output -- 1.5 Scope/Boundary Conditions of Waste Biorefineries -- 1.5.1 'Waste Biorefineries' Underlying Concepts -- 1.5.2 Technical and Economic Sustainability -- 1.5.3 Sustainability in the Environment -- 1.5.4 Market Potential -- 1.6 Implementation of Waste Biorefinery Frameworks -- 1.7 Value-Added Products Generated -- 1.7.1 Agricultural Products -- 1.7.1.1 Lignocellulosic Agricultural Byproducts -- 1.7.2 Organic Acids -- 1.7.3 Energy/Fuel -- 1.7.4 Industrial Products -- 1.7.5 Algae-based Products -- 1.7.6 Pharmaceutical Products -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2: Valorization of Biowaste to Biowealth Using Cellulase Enzyme During Prehydrolysis Simultaneous Saccharification and Fermentation Process -- 2.1 Introduction -- 2.2 Materials and Methods -- 2.2.1 Materials -- 2.2.2 Pretreatment -- 2.2.3 Yeast Culture -- 2.2.4 PSSF Experiment -- 2.2.5 Ethanol Tolerance Assay -- 2.2.6 Analytical Methods -- 2.2.7 Simultaneous Saccharification and Fermentation (SSF) -- 2.3 Results and Discussion -- 2.3.1 Culture Media Fermentation -- 2.3.2 Ethanol Tolerance Assay. , 2.3.3 Simultaneous Saccharification and Fermentation (SSF) -- 2.4 Conclusions -- References -- Chapter 3: Enzyme-associated Bioconversion of Agro-waste Materials via Macrofungi Cultivation for Sustainable Next-gen Ecosystems -- 3.1 Introduction -- 3.2 Agro-waste as a Key To Sustainability -- 3.3 Macrofungi: An Incredible Enzyme Factory -- 3.4 Bioconversion: A Fundamental Concept of Biorefinery Systems -- 3.4.1 Different Bioconversion Pathways -- 3.4.2 Concepts of Biorefineries -- 3.4.3 Bioconversion of Agro-wastes -- 3.5 Macrofungal Cultivation: An Enzyme-associated Biorefinery Process -- 3.5.1 An Integrated Biorefinery System of Macrofungal Cultivation -- 3.5.2 The Technological Evolution of the System -- 3.5.3 Solid-state and Submerged Fermentation Systems for Utilization of Agro-waste -- 3.5.4 Advantages of Using Macrofungi and Agro-waste -- 3.6 Conclusion -- References -- Chapter 4: Extremophilic Bacteria and Archaea in the Valorization of Metalloids: Arsenic, Selenium, and Tellurium -- 4.1 Means and Inputs of Metalloids Into the Environment -- 4.2 Bioremediation Processes Using Extremophilic Microorganisms -- Benefits Over Physicochemical Technologies -- 4.3 Extremophilic Microorganisms and their Versatility in the Removal of Metalloids -- 4.4 Economics and Feasibility for Bioremediation Processes -- References -- Chapter 5: Enzyme Purification Strategies -- 5.1 Introduction -- 5.2 Prerequisites for Enzyme Purification -- 5.2.1 Source and Enzyme Type -- 5.2.2 Assay -- 5.3 Conventional Enzyme Purification Strategies -- 5.3.1 Based On Charge/Solubility -- 5.3.1.1 Precipitation -- 5.3.1.2 Ion Exchange Chromatography -- 5.3.1.3 Isoelectric Focusing Electrophoresis -- 5.3.2 Based on the Size -- 5.3.2.1 Dialysis/Ultrafiltration -- 5.3.2.2 Centrifugation -- 5.3.2.3 Size Exclusion/Gel Filtration Chromatography -- 5.3.3 Based On Affinity. , 5.3.3.1 Affinity Chromatography -- 5.3.3.2 Adsorption Chromatography -- 5.3.3.3 Affinity Precipitation -- 5.4 Other Enzyme Purification Strategies -- 5.4.1 Aqueous Two-phase System (ATPS) -- 5.4.2 Three-phase Partitioning (TPP) System -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6: Overview of the Enzyme Support System of Immobilization for Enhanced Efficiency and Reuse of Enzymes -- 6.1 Introduction -- 6.2 Advantages of Enzyme Immobilization -- 6.3 Factors for the Cost of Enzyme Immobilization -- 6.4 Enzyme Immobilization Methodology and Strategies -- 6.4.1 Adsorption of Enzymes -- 6.4.2 Entrapment/Encapsulation of Enzymes -- 6.4.3 Covalent Immobilization of Enzymes -- 6.4.4 Cross-linking of Enzymes -- 6.5 Material Selection and Types for Immobilization of Enzymes -- 6.5.1 Organic Materials Used for Immobilization -- 6.5.1.1 Natural Polymers -- 6.5.1.1.1 Alginate, Cellulose, Chitin and Chitosan, Starch, Sepharose -- 6.5.2 Some Synthetic Polymers for Immobilization -- 6.5.3 Inorganic Supports for Immobilization -- 6.6 Surface Analysis Technologies for the Characterization of Immobilization -- 6.6.1 Analysis Technologies for Immobilized Enzymes -- 6.7 General Reactors Utilized in Industry for Biocatalysis Reactions -- 6.7.1 Enzyme Application -- 6.7.2 Immobilized Enzymes in the Food Industry -- 6.7.3 HFSC Production by D-glucose/Xylose Isomerases -- 6.7.4 Epimerase Action on Allulose -- 6.7.5 Immobilized Enzymes for the Chemical Industry -- 6.7.6 Lipase CalB for Chiral Amines -- 6.7.7 Acrylates and Organosilicone Esters or Amides Processing by Lipase CalB -- 6.7.8 Role of Enzymes Immobilization in Pharmaceutical Industry -- 6.7.9 Lipase CalB for Odanacatib -- 6.7.10 Sofosbuvir Bio-catalysis by Lipase CalB -- 6.7.11 Importance of Enzyme Immobilization in Biomedical Devices and Biosensors -- 6.7.11.1 Lipases in Biomedical Devices. , 6.7.11.2 Urease in Medical Devices -- 6.8 Conclusions -- References -- Chapter 7: Nanobiotechnology in Enzyme-based Biorefinement and Valorization of Waste -- 7.1 Overview of Nanobiotechnology -- 7.1.1 Historical Basis -- 7.1.2 Nanomaterials: Types and Definition -- 7.1.3 Effect of Nanomaterials on Organisms -- 7.1.3.1 NPs Effect on Biofilms -- 7.1.3.2 NPs Effect on Host Microbiota -- 7.2 Waste Feedstocks for Valorization -- 7.2.1 Organic Wastes -- 7.2.2 Inorganic Wastes -- 7.3 Microbially Synthesized Nanomaterials -- 7.3.1 Metal Containing Nanoparticles -- 7.3.2 Bioplastics -- 7.3.3 Biofertilizers -- 7.4 Protein-mediated Nanomaterial Refinement -- 7.4.1 Cell-free Systems and Magnetic Nanoparticles -- 7.4.2 Nanowire Production by Electrically Active Bacteria -- 7.4.3 Photosynthetic NP Production -- 7.5 Conclusion -- References -- Chapter 8: Bioinformatics Integration to Biomass Waste Biodegradation and Valorization -- 8.1 Introduction -- 8.2 First-generation Valorisation -- 8.2.1 Overview of Primary Methods -- 8.2.2 Biogas Production -- 8.2.3 Biohydrogen Production -- 8.2.3.1 Basic Concepts of Biohydrogen Generation by Biohythane and Dark Fermentation -- 8.2.3.2 Biohydrogen and Biohythane Synthesis from Biowaste: Techniques and Applications -- 8.2.3.2.1 Method of Hydraulic Retention Time (HRT) -- 8.2.3.2.2 Method of Organic Loading Rate (OLR) -- 8.2.3.2.3 Hydrogenotrophic Activity Inhibition -- 8.2.3.2.4 Biohydrogen and Biomethane Yields -- 8.2.3.3 The Two-phase Methodology of Automatic Control and Its Successful Application Using Research Developments and Potential Barriers -- 8.3 Second-generation Valorization -- 8.3.1 Overview of Primary Methods -- 8.3.2 Key Challenges -- 8.3.3 Applications of Functional Foods -- 8.4 Bioinformatics Systems: Tools and Databases -- 8.4.1 Databases. , 8.4.1.1 The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) -- 8.4.1.2 OxDBase -- 8.4.1.3 The Bionemo Database -- 8.4.1.4 MetaCyc -- 8.4.1.5 BioCyc -- 8.4.2 Pathway Prediction Systems -- 8.4.2.1 The UM-BBD-Pathway Prediction System (PPS) -- 8.4.2.2 PathPred -- 8.4.2.3 The Biochemical Network Integrated Computer Explorer (BNICE) -- 8.4.2.4 From Metabolite to Metabolite (FMM) -- 8.4.2.5 Metabolic Tinker -- 8.4.3 Chemical Toxicity Prediction Using Computational Methodologies -- 8.4.4 Next-generation Sequencing: Genome Sequences of Xenobiotic Degrading Bacteria -- 8.5 Computer-aided Molecular Design (CAMD) -- 8.5.1 CAMD Software -- 8.5.1.1 Library-based -- 8.5.1.2 Intelligent -- 8.6 Technology Coefficients -- 8.7 Biomethanization: Green Waste Valorisation Technology -- 8.7.1 Methodology -- 8.7.1.1 Site Sampling and Biomethanization Facilities -- 8.7.1.2 Next-generation Sequencing -- 8.7.1.3 Sequencing Data Processing -- 8.8 Conclusion -- References -- Chapter 9: Cell Surface Engineering: A Fabrication Approach Toward Effective Valorization of Waste -- 9.1 Introduction -- 9.2 Conventional Strategies Used in the Production of Bioethanol -- 9.3 Consolidated Bioprocessing (CBP) -- 9.3.1 Structural Composition of Natural Cellulosomes of Clostridium thermocellum and Recombinant Minicellulosomes -- 9.4 Protein Cell Surface Display -- 9.4.1 Approaches for Cell Surface Display -- 9.4.2 Yeast - Arming Yeast -- 9.5 Cell Surface Engineering in the Valorization of Waste -- 9.5.1 Construction of Whole-cell Biocatalyst for Biofuel Production -- 9.5.2 For Bioadsorption of Heavy and Toxic Metal and Bioremediation -- 9.6 Evolution of Enzymes by Cell Surface Engineering -- 9.6.1 Tailoring GPI Anchors -- 9.6.2 Inhibitor Tolerance -- 9.6.3 Metabolic Engineering Approach -- 9.6.4 Genetic Engineering Approach. , 9.6.5 Immobilization of Enzymes on the Cell Surface.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (259 pages)
    ISBN: 9781000683110
    Series Statement: Novel Biotechnological Applications for Waste to Value Conversion Ser.
    Language: English
    Note: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor -- Contributors -- Conflict of Interest -- Abbreviations -- Chapter 1: Pretreatment Methods for Overcoming Biomass Recalcitrance -- 1.1 Introduction -- 1.2 Structural Composition of Lignocellulosic Biomass -- 1.2.1 Cellulose -- 1.2.2 Hemicellulose -- 1.2.3 Lignin -- 1.3 Chemical Interactions Among the Components of Lignocellulosic Biomass -- 1.3.1 Intrapolymer Linkages -- 1.3.2 Interpolymer Linkages -- 1.4 Pretreatment of Lignocellulosic Biomass -- 1.4.1 Physical Pretreatment -- 1.4.1.1 Mechanical Grinding -- 1.4.1.2 Liquid Hot Water Pretreatment -- 1.4.1.3 Pretreatment by Radiation -- 1.4.2 Chemical Pretreatment -- 1.4.2.1 Dilute Acid Pretreatment -- 1.4.2.2 Dilute Alkali Pretreatment -- 1.4.2.3 Ionic Liquids -- 1.4.2.4 Organosolv Pretreatment -- 1.4.2.5 Deep Eutectic Solvent Pretreatment -- 1.4.3 Physicochemical Pretreatment -- 1.4.3.1 Steam Explosion -- 1.4.3.2 Ammonia Fiber Explosion (AFEX) -- 1.4.3.3 Oxidative Pretreatment -- 1.4.4 Biological Pretreatment -- 1.4.5 Combination of Pretreatment Methods -- 1.4.5.1 Alkaline Pretreatment Combined with Dilute Acid Pretreatment -- 1.4.5.2 Dilute Acid Pretreatment Combined with Steam Explosion Pretreatments -- 1.4.5.3 Microwave-assisted Alkali Pretreatment -- 1.5 Formation of Inhibitors During Pretreatment of Biomass -- 1.5.1 Origin of Inhibitors and Mechanism of Inhibition -- 1.6 Conclusion -- Acknowledgments -- References -- Chapter 2: Lignocellulosic Biomass for Biofuels Production, an Integrated Approach -- 2.1 Introduction -- 2.2 Supply Chain Network and Biomass Process Integration -- 2.2.1 Supply Chain Network Structures -- 2.2.2 Biomass Conversion Processes and Integration of Biological Processes. , 2.3 Pretreatment of Lignocellulosic Feedstock Sources for Biological Processes -- 2.3.1 Mechanical Pretreatments -- 2.3.1.1 High-pressure Homogenization (HPH) -- 2.3.1.2 Steam Explosion Pretreatment -- 2.3.1.3 Hot Water -- 2.3.1.4 Microwave Radiation -- 2.3.2 Chemical Pretreatments -- 2.3.2.1 Acid-Base Pretreatments -- 2.3.2.2 Ammonia-base Pretreatments -- 2.3.2.3 Organic Solvents -- 2.3.2.4 Organic Solvents Combined with Oxidants -- 2.3.2.5 Microwave-assisted Solvolysis -- 2.3.2.6 Ionic Liquids -- 2.3.3 Lignin Recovery in Pulp Mills -- 2.4 Biological Processes for Integration with Biomass Activities or Other Conversion Processes -- 2.4.1 Hydrolysis and Fermentation for Ethanol Production -- References -- Chapter 3: Laccase-mediated Pretreatment of Lignocellulosic Biomass: Current Status and Future Prospects -- 3.1 Introduction -- 3.2 Sources of Laccases -- 3.2.1 Fungal Laccase -- 3.2.2 Bacterial Laccase -- 3.2.3 Plant Laccase -- 3.2.4 Insect Laccase -- 3.3 Structural Characteristics of Laccase -- 3.4 The Catalytic Mechanism of Laccase -- 3.5 Approaches for Better Biocatalytic Action of Laccase -- 3.6 Perspective -- 3.7 Conclusion -- Acknowledgments -- References -- Chapter 4: Lignin Peroxidases and Their Relevance in Lignin-based Circular Bioeconomy: A Microbial Treasure for Sustainable Development -- 4.1 Introduction -- 4.2 Structural Components of Lignocellulosic Biomass -- 4.3 Enzymatic Systems Involved in the Cessation of the Lignocellulosic Organization -- 4.3.1 Cellulolytic Enzymes -- 4.3.2 Xylanolytic Enzymes -- 4.3.3 Ligninolytic Enzymes -- 4.3.3.1 Laccases -- 4.3.3.2 Peroxidases -- 4.4 Mechanism of Lignin Peroxidase Catalytic Reactions -- 4.5 Microbial Production of Lignin Peroxidases -- 4.6 Challenges in Lignin Peroxidase Production for Industrial Applications -- 4.7 Applications of Lignin Peroxidase. , 4.7.1 Biodegradation of Environmental Pollutants -- 4.7.2 Cosmetic Industries -- 4.7.3 Paper and Pulp Industries -- 4.7.4 Valorization of Biomass for Value-Added Products -- 4.8 Conclusions -- Acknowledgments -- References -- Chapter 5: Structure, Properties, and Functions of Manganese Peroxidase for Enzymatic Pretreatment of Waste Biomass -- 5.1 Introduction -- 5.2 Enzyme-mediated Pretreatment of Waste Biomass -- 5.3 Manganese Peroxidase: A Brief History -- 5.4 Structure and Properties of Manganese Peroxidase -- 5.4.1 The Overall Crystal Structure -- 5.4.2 The Heme Environment and Peroxide Binding Site -- 5.4.3 The Manganese Binding Site -- 5.4.4 The Role of Calcium Ions -- 5.5 Mechanism of Action and Catalytic Pathway -- 5.5.1 Mechanism of Action on Phenolic Lignin Substrates -- 5.5.2 Mechanism of Action on Non-phenolic Lignin Substrates -- 5.6 Factors Affecting Enzyme-assisted Pretreatment -- 5.6.1 Fungal Strain -- 5.6.2 Moisture Content -- 5.6.3 Aeration -- 5.6.4 Source of Carbon -- 5.6.5 Concentration and Source of Nitrogen -- 5.6.6 Temperature -- 5.6.7 Acidity -- 5.7 Versatile Peroxidase: An Amalgam of MnP and LiP -- 5.8 Future Perspective -- 5.9 Conclusion -- Acknowledgement -- References -- Chapter 6: An Overview of Pretreatment Strategies for the Development of Enzyme-based Biorefinery with Special Emphasis on Pectinases -- 6.1 Introduction -- 6.2 Pretreatment of Lignocellulosic Biomass -- 6.2.1 Different Methods of Pretreatment -- 6.2.1.1 Physical Pretreatment -- 6.2.1.1.1 Thermal Pretreatment -- 6.2.1.1.2 Mechanical Pretreatment -- 6.2.1.1.3 Ultrasound Pretreatment -- 6.2.1.2 Physicochemical Pretreatment -- 6.2.1.2.1 Steam Explosion -- 6.2.1.2.2 Liquid Hot Water Pretreatment -- 6.2.1.2.3 Radiation Pretreatment -- 6.2.1.3 Chemical Pretreatment -- 6.2.1.3.1 Acid Pretreatment -- 6.2.1.3.2 Alkaline Pretreatment. , 6.2.1.4 Biological Pretreatment -- 6.2.1.4.1 Enzymatic Pretreatment -- 6.2.1.4.2 Fungal and Microbial Consortium Pretreatment -- 6.2.1.4.3 Aerobic Digestion -- 6.3 Merits and Demerits of Different Pretreatment Methods -- 6.4 Pretreatment of Lignocellulose Biomass Using Pectinase Enzyme -- 6.4.1 Structure of Pectinase Enzyme -- 6.4.2 Mechanism of Pectinase in the Pretreatment of Waste Biomass -- 6.5 Future Prospects and Conclusion -- References -- Chapter 7: Chitinases: Structure, Function, and Valorization of Marine Shell Waste -- 7.1 Introduction -- 7.2 Chitin and Its Derivatives: Their Structures and Properties -- 7.3 Conventional Methods of Chitin Recovery -- 7.3.1 Chemical Conversion of Chitin to Chitosan and Chito- oligosaccharide -- 7.4 Classification of Chitinases -- 7.4.1 Structural Diversity of Chitinases -- 7.4.2 Chitinases: Types and Mechanism of Action -- 7.5 Screening, Production, and Purification of Chitinases -- 7.5.1 Screening and Isolation of Chitinase Producing Organisms -- 7.5.1.1 Screening of Bacteria -- 7.5.1.2 Screening of Fungi -- 7.5.2 Production of Chitinase -- 7.5.3 Extraction and Purification of Chitinases -- 7.6 Chitinase Assay Development -- 7.7 Role of Chitinases -- 7.8 Application of Chitinases -- 7.8.1 Enzymatic Valorization of Marine Waste -- 7.8.2 Effect of Pretreatment Process -- 7.8.3 Chitinase for Hydrolysis -- 7.9 Future Perspective -- References -- Chapter 8: Pretreatment and Valorization of Textile-Wastewaters by Haloarchaea -- 8.1 Textile Factory Effluents -- 8.1.1 Various Constituents and Their Harmful Effects -- 8.1.2 Characteristics of Textile Effluents -- 8.1.3 Characteristics of the Real Effluent Discharged from Textile Factories -- 8.2 Conventional Biotreatment Processes -- 8.2.1 Biological Methods -- 8.2.2 Chemical Methods -- 8.2.3 Physical Methods. , 8.3 Microbes, Bioreactors Used and Difficulties Encountered -- 8.4 Biohydrolysis of Cellulose -- 8.4.1 Cellulases -- 8.5 Halophiles and Haloarchaea in Treatment of Textile Effluents -- 8.6 Predicted Biorefinery, Environmental Clean Technology -- References -- Chapter 9: Evolution of Biological Pretreatment Methods for Agricultural Residues and Defatted Microalgae for Overcoming Biomass Recalcitrance in Biofuel Generation -- 9.1 Introduction -- 9.2 Agricultural Wastes for Biofuel Generation -- 9.3 Pretreatment Methods for Agricultural Wastes in Biofuel Generation -- 9.3.1 Physical Pretreatment Methods -- 9.3.1.1 Milling -- 9.3.1.2 Extrusion -- 9.3.1.3 Microwave Treatment -- 9.3.1.4 Ultrasonication -- 9.3.2 Thermochemical Methods -- 9.3.2.1 Gasification -- 9.3.2.2 Liquefaction -- 9.3.2.3 Pyrolysis -- 9.4 Microalgae in Biofuel Generation -- 9.5 Conventional Biological Pretreatment Methods for Defatted Microalgae for Biofuel Generation -- 9.6 Microalgae Potential in the Fuel Industry -- 9.7 Methods of Converting Microalgae into Energy -- 9.8 Challenges and Prospects for Biofuel Production from Microalgae -- 9.9 Pretreatment Methods for Microalgae in Biofuel Generation -- 9.9.1 Microwave-assisted Pretreatment Method -- 9.9.2 Ultrasonic Pretreatment Method -- 9.9.3 Enzymatic Hydrolysis-based Pretreatment Method -- 9.9.4 Catalytic Pretreatment Method -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (269 pages)
    ISBN: 9781000683158
    Series Statement: Novel Biotechnological Applications for Waste to Value Conversion Ser.
    Language: English
    Note: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editor -- Contributors -- Abbreviations -- Chapter 1: Bioprocessing Approaches for Enzyme-based Waste Biomass Saccharification -- 1.1 Introduction -- 1.2 The Burgeoning Demand for Conventional Lignocellulosic Biomass -- 1.2.1 Municipal Wastes as Alternate Sources of Lignocellulosic Biomass -- 1.3 Pretreatment: Commonly Used Procedures, Their Limitations, and Recent Advancements -- 1.3.1 Bioprocess Inhibitors Generated in Pretreatment Processes -- 1.3.2 Techniques for Removal of Bioprocess Inhibitors -- 1.4 Cellulases -- 1.4.1 Enzyme-based Deconstruction of Lignocellulosic Biomass -- 1.4.2 Cellulolytic Microbes -- 1.4.2.1 Major Cellulolytic Fungi -- 1.4.2.1.1 The Substrate Carbon Source's Impact on Fungal Cellulase Production -- 1.4.2.1.2 The Molecular Basis for Enzyme Production in Major Cellulolytic Fungi -- 1.4.2.2 Major Cellulolytic Bacteria -- 1.4.2.2.1 The Cellulosomal System -- 1.5 Bioprocess Techniques for Microbial Cellulase Production -- 1.5.1 Solid-state Fermentation - SSF -- 1.5.1.1 Common Issues Pertaining to an SSF for Cellulase Production -- 1.5.1.2 Process Improvements in an SSF for Cellulase Production -- 1.5.1.2.1 The Impact of Pretreated Substrates in the SSF -- 1.5.1.2.2 Fixed Volume Cyclic Fed-batch SSF -- 1.5.2 Submerged Fermentation (SMF) -- 1.5.2.1 Major Shortcomings of an SMF for Cellulase Production -- 1.5.2.2 A Sequential Cellulase Induction-partial Saccharification-Catabolite Repression in an SMF for Cellulase Production -- 1.5.2.3 Bottlenecks in the SMF Operation for Cellulase Production -- 1.5.2.4 A Fed-batch SMF Operation for Improved Cellulase Yield -- 1.5.2.4.1 Shortcomings of the Fed-batch SMF for Cellulase Production -- 1.6 Integrated Bioprocesses for Improved Saccharification Yield. , 1.6.1 The Biochemical Basis of an Enzymatic Saccharification Process -- 1.6.1.1 Shortcomings of Traditional Enzymatic Saccharification -- 1.6.2 Simultaneous Saccharification and Fermentation (SSF): The Process, Its Drawbacks, and Advancements -- 1.6.3 Partial Saccharification and Simultaneous Saccharification and Fermentation (PSSSF) -- 1.6.4 Semi-simultaneous Saccharification and Fermentation (SSSF) -- 1.6.5 Semi-simultaneous Saccharification and Cofermentation (SScF) -- 1.6.6 Consolidated Bioprocessing (CBP) -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2: Developments in Hydrolysis Processes Toward Enzymatic Hydrolysis in Biorefinery -- 2.1 Introduction -- 2.2 Historical Background of the Hydrolysis Process -- 2.3 Conventional Methods of Hydrolysis and Their Drawbacks -- 2.3.1 Acid-catalyzed Hydrolysis -- 2.3.2 Base-catalyzed Hydrolysis -- 2.3.3 Hydrolysis in Ionic Liquid -- 2.3.4 Drawbacks of Conventional Methods of Hydrolysis -- 2.4 Enzymatic Hydrolysis -- 2.4.1 Cellulase -- 2.4.2 Hemicellulases -- 2.4.3 Peroxidase -- 2.4.4 Laccase -- 2.5 Factors Affecting Enzymatic Hydrolysis -- 2.5.1 Enzyme-related Factors -- 2.5.1.1 Enzyme Loading -- 2.5.1.2 Synergy of the Enzymes -- 2.5.1.3 Recycling of Enzymes -- 2.5.2 pH, Temperature, and Mixing -- 2.5.3 Effect of Surfactants -- 2.5.4 Substrate-related Factors -- 2.5.5 Recent Advances in Enzymatic Hydrolysis -- 2.6 Future Outlook -- 2.7 Conclusion -- Acknowledgment -- References -- Chapter 3: Overview of the Mechanism of Hydrolytic Enzymes and Their Application in Waste Treatment -- 3.1 Introduction -- 3.2 Different Classes of Hydrolytic Enzymes -- 3.2.1 Cellulolytic and Hemicellulolytic Enzymes -- 3.2.1.1 The Carbohydrate-active Enzymes Database -- 3.2.2 Proteases -- 3.2.2.1 Exopeptidases -- 3.2.2.1.1 Aminopeptidases -- 3.2.2.1.2 Carboxypeptidases -- 3.2.2.2 Endopeptidases. , 3.2.2.2.1 Serine Proteases -- 3.2.2.2.2 Aspartic Proteases -- 3.2.2.2.3 Cysteine/Thiol Proteases -- 3.2.2.2.4 Metalloproteases -- 3.2.3 Lipolytic Enzymes -- 3.3 Mechanism of Action of Hydrolase Enzymes -- 3.3.1 Glycosidic Hydrolases (GHs) -- 3.3.2 Proteases -- 3.3.3 Lipases -- 3.4 Role of Hydrolytic Enzymes in Waste Management -- 3.4.1 Treatment of Carbohydrate Wastes -- 3.4.2 Treatment of Protein Wastes -- 3.4.3 Treatment of Lipid Wastes -- 3.5 Recent Advances in Enzymatic Hydrolysis of Wastes -- 3.6 Current Challenges in the Enzymatic Hydrolysis of Wastes -- 3.7 Conclusion -- Acknowledgments -- References -- Chapter 4: Cellulase in Waste Valorization -- 4.1 Introduction -- 4.2 Cellulose -- 4.3 Cellulase -- 4.3.1 Types of Cellulase -- 4.3.2 Catalytic Mechanism -- 4.4 Role of Cellulase in Waste Valorization -- 4.4.1 Cellulase in the Valorization of Agricultural Wastes -- 4.4.2 Cellulase in Valorization of Cellulosic Waste from Industries -- 4.4.3 Cellulase in the Valorization of Renewable Municipal Waste -- 4.5 Valuable Products from Hydrolyzed Cellulosic Waste -- 4.5.1 Cellulase Enzyme -- 4.5.2 Biofuel -- 4.5.3 Organic Acids -- 4.6 Conclusion -- Acknowledgments -- References -- Chapter 5: Cellulosic Bioethanol Production from Liquid Wastes Using Enzymatic Valorization -- 5.1 Introduction -- 5.2 About Liquid Wastes and Different Enzymes -- 5.2.1 Sewage Sludge -- 5.2.2 Animal Dung -- 5.2.3 Kitchen Food Waste -- 5.3 Cellulosic Biomethanol Production -- 5.3.1 Pretreatment of Lignocellulosic Biomass and Feedstock Preparation -- 5.3.2 Enzymes for Biofuel Production -- 5.3.2.1 Cellulolytic Enzymes -- 5.3.2.2 Amylases -- 5.3.2.3 Proteases -- 5.3.2.4 Pectinases -- 5.3.2.5 Lactases -- 5.3.3 Enzyme Hydrolysis -- 5.3.4 Fermentation -- 5.3.5 Distillation -- 5.4 Conclusions and Future Recommendations -- References. , Chapter 6: The Role of Pectinases in Waste Valorization -- 6.1 Introduction -- 6.2 Pectin and Its Structure -- 6.2.1 Homogalacturonan (HG) -- 6.2.2 Rhamnogalacturonan I (RGI) -- 6.2.3 Rhamnogalacturonan II (RGII) -- 6.3 Depolymerization of Pectin Substances -- 6.3.1 Chemical Method -- 6.3.2 Physical Method -- 6.3.3 Enzyme Method -- 6.4 Pectinolytic Enzymes -- 6.5 Biochemical Properties of Pectinases -- 6.5.1 Protopectinases (PPases) -- 6.5.2 Polygalacturonases (PG) -- 6.5.3 Pectin Esterases (PEs) -- 6.5.4 Polygalacturonase (PGs) -- 6.5.5 Pectin Lyases (PLs) -- 6.5.6 Polygalacturonate Lyase (PGLs) -- 6.6 Purification of Microbial Pectinases -- 6.6.1 Production Techniques for Pectinases -- 6.6.1.1 Fermentation Strategies -- 6.6.1.2 Submerged Fermentation -- 6.6.1.3 Solid-state Fermentation -- 6.6.1.4 Immobilization of Cell Culture -- 6.6.2 The Role of Genetic Engineering in Microbial Pectinase Production -- 6.6.3 Fermentation Media Optimizations for Pectinase Production -- 6.6.4 Factors Affecting Pectinase Production -- 6.6.4.1 Role of the Substrate in Pectinase Production -- 6.6.4.2 Effect of pH and Temperature on Enzyme Production -- 6.6.4.3 Effect of Metal Ions on the Activity of Pectinases During Production -- 6.7 Application of Pectinases in Waste Valorization -- 6.7.1 Food and Agro-waste -- 6.7.1.1 Food and Agro-waste Valorization Methods -- 6.7.1.1.1 Composting -- 6.7.1.1.2 Fermentation -- 6.7.1.1.3 Anaerobic Digestion -- 6.7.1.2 Recycling of Wastepaper -- 6.7.1.3 Oil Extraction -- 6.7.1.4 Animal Feed -- 6.7.1.5 Wastewater Treatment -- 6.8 Conclusion -- References -- Chapter 7: Recent Advances in Enzyme-assisted Hydrolysis of Waste Biomass to Value-added Products -- 7.1 Introduction -- 7.2 Current Scenario of Waste Biomass Potential -- 7.3 Environmental Impacts of Waste Biomass -- 7.4 Structure, Composition, and Properties of Biomass Waste. , 7.5 Significance of Enzymatic Hydrolysis Treatment -- 7.6 Different Types of Enzymes and Their Role in Novel Waste Conversion Strategy -- 7.6.1 Cellulolytic Enzymes -- 7.6.2 Ligninolytic Enzymes -- 7.6.2.1 Laccases -- 7.6.2.2 Lignin Peroxidase (LiP) -- 7.6.2.3 Manganese Peroxidase (MnP) -- 7.6.2.4 Versatile Peroxidase (VP) -- 7.7 Environmental and Socioeconomic Benefits of Reusing Waste Materials -- 7.7.1 Eco-friendliness -- 7.7.2 Sustainable and Abundant -- 7.7.3 Cost-effectiveness -- 7.7.4 Land Management -- 7.7.5 Carbon Neutral -- 7.7.6 Replacement for Petrochemical Resources -- 7.7.7 Non-competitiveness with Food -- 7.7.8 Other Benefits -- 7.8 Value-added Products from Waste Biomass -- 7.8.1 Nutrients -- 7.8.2 Energy/Fuel -- 7.8.3 Biopolymers -- 7.8.4 Fertilizers -- 7.8.5 Chemicals -- 7.8.6 Medicines -- 7.9 Conclusion and Future Prospects -- References -- Chapter 8: Valorization of Recalcitrant Feather-waste by Extreme Microbes -- 8.1 Introduction -- 8.2 Recalcitrant Feather-waste -- 8.2.1 Physical Characteristics of Feather-waste -- 8.2.2 Chemical Characteristics -- 8.3 Hazards and Management of Feather-waste -- 8.4 Traditional Disposal Methods for Feather-waste -- 8.5 Pre-treatment Technologies for Hydrolysis of Feather-waste -- 8.6 Current Methods -- 8.6.1 Hydrothermal -- 8.6.2 Superheated Process or Thermal Hydrolysis -- 8.6.3 Steam Explosion/Steam Pressure Cooking -- 8.6.4 Acid and Alkali Treatments -- 8.6.5 Oxidation and Reduction Method -- 8.6.6 Ionic Liquids -- 8.6.7 Microbial Hydrolysis -- 8.7 Hydrolysis Using a Combination of Biological and Physicochemical Methods -- 8.8 Emerging Technologies for Poultry Waste Hydrolysis -- 8.8.1 Gasification -- 8.8.2 Pyrolysis -- 8.8.3 Sub/Super-critical Water Hydrolysis Treatment/Hydrothermal Liquefaction -- 8.8.4 Deep Eutectic Solvents -- 8.8.5 Anaerobic Digestion and Anaerobic Co-digestion. , 8.9 Bio-hydrolysis of Feather-waste by Microorganisms and their Enzymes.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Algae. ; Electronic books.
    Description / Table of Contents: This book offers complete coverage of algae refinery, including up-and down-stream process while proposing an integrated algal refinery for advancement of existing technologies and summarizing the strategies and future perspectives of algal refinery.
    Type of Medium: Online Resource
    Pages: 1 online resource (267 pages)
    Edition: 1st ed.
    ISBN: 9781003828709
    Series Statement: Greener Technologies for Sustainable Industry and Environment Series
    DDC: 660.6
    Language: English
    Note: Cover -- Half Title -- Series -- Title -- Copyright -- Dedication -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- About the Editors -- List of Contributors -- Chapter 1 Introduction to Microalgae and Its Refinery -- 1.1 Introduction -- 1.2 Classification and Overview of the Microalgae -- 1.3 Upstream and Downstream Processing of Microalgae -- 1.3.1 Microalgae Cultivation -- 1.3.2 Downstream Processing -- 1.4 Algae Biorefinery and Applications of Its Products -- 1.4.1 Bioenergy Products -- 1.4.2 Pharmaceuticals -- 1.4.3 Cosmetics -- 1.4.4 Chemicals -- 1.4.5 Food products -- 1.4.6 Environmental Applications -- 1.5 Future Prospects and Conclusions -- Acknowledgments -- References -- Chapter 2 Phycoremediation: A Sustainable Alternative for Removing Emerging Contaminants from Wastewater -- 2.1 Introduction -- 2.2 Emerging Contaminants (ECs) -- 2.2.1 Organic Contaminants -- 2.2.2 Inorganic Contaminants -- 2.3 Methods for Removing Emerging Contaminants from Wastewater -- 2.3.1 Traditional Methods -- 2.3.2 Modern Methods -- 2.4 Mechanism Used by Microalgae for Bioremediation -- 2.4.1 Microalgal Biosorption of ECs -- 2.4.2 Bio-Uptake of ECs -- 2.4.3 Photodegradation and Volatilization -- 2.4.4 Biodegradation of ECs by Microalgae -- 2.4.5 Bioaccumulation -- 2.4.6 Co-culturing of Microalgae to Remove ECs -- 2.5 Conclusion -- References -- Chapter 3 Advances in Cultivation and Emerging Application of Chlorella vulgaris: A Sustainable Biorefinery Approach -- 3.1 Introduction -- 3.2 Chlorella vulgaris -- 3.2.1 Growth Factors -- 3.2.2 Environmental Factors -- 3.2.3 Metabolic Pathways -- 3.2.4 Cultivation Systems -- 3.3 Culture Medium System -- 3.3.1 Synthetic Mediums -- 3.3.2 Organic Mediums -- 3.4 Biomass Harvesting -- 3.4.1 Centrifugation -- 3.4.2 Flocculation -- 3.4.3 Flotation -- 3.4.4 Filtration -- 3.4.5 Sedimentation. , 3.5 Methods for Extraction -- 3.6 Found in the Market with Different Applications -- 3.6.1 Biofuels -- 3.6.2 Human Nutrition -- 3.6.3 Animal Feed -- 3.6.4 Cosmetology, Nutraceutical, and Pharmaceutical -- 3.7 Future Perspectives -- 3.8 Conclusion -- Acknowledgments -- References -- Chapter 4 Algae Based Nutrient Recovery from Different Waste Streams -- 4.1 Introduction -- 4.2 Algae and Their Role in Biotechnology -- 4.3 Nutrients from Wastewater Streams -- 4.3.1 Municipal Wastewater -- 4.3.2 Agricultural Wastewater -- 4.3.3 Industrial Wastewater -- 4.4 Technologies to Recover Nutrients from Waste Streams -- 4.4.1 Algae-Based Technologies -- 4.5 Mechanism of Nutrient Recovery -- 4.5.1 Carbon -- 4.5.2 Nitrogen -- 4.5.3 Phosphorus -- 4.5.4 Other Nutrients -- 4.6 Challenges and Limitations -- 4.7 Conclusions -- Acknowledgments -- References -- Chapter 5 Potential Applications of Algae Biomass for the Development of Natural Products -- 5.1 Introduction -- 5.2 Algae-Based Energy Production -- 5.2.1 Biofuels -- 5.2.2 Bioethanol -- 5.2.3 Biohydrogen -- 5.2.4 Biomethane -- 5.2.5 Biobutanol -- 5.3 Biopotential of Algae-Based Products -- 5.3.1 Polyunsaturated Fatty Acids (PUFAs) -- 5.3.2 Sterols -- 5.3.3 Carotenoids -- 5.3.4 Polysaccharides -- 5.3.5 Vitamins -- 5.3.6 Microalgal Proteins -- 5.3.7 Phycobiliproteins -- 5.3.8 Livestock and Agriculture -- 5.4 Algae-Based Companies -- 5.5 Conclusions, Challenges, and Future Perspectives -- Acknowledgments -- References -- Chapter 6 Algal Metal Remediation for Contaminated Source -- 6.1 Introduction -- 6.2 Sources of Heavy Metals (HMs) -- 6.3 Impact of HMs -- 6.3.1 Effects on Soil -- 6.3.2 Effects on Water -- 6.3.3 Effects on Air -- 6.3.4 Effects on Aquatic Ecosystem -- 6.4 Phycoremediation: An Algal Mechanism to Eradicate Pollution -- 6.4.1 Extracellular Uptake (Biosorption). , 6.4.2 Intracellular Uptake (Bioaccumulation and Compartmentalization) -- 6.5 Strategies to Improve the Bioremediation Ability of Algae -- 6.5.1 Algal Metal Transportation -- 6.5.2 Metal Chelation -- 6.5.3 Metal Biotransformation -- 6.5.4 Oxidative Stress Response Regulation -- 6.5.5 Metal Stress Response Regulation -- 6.5.6 Bioengineering of Algal Cell Surface -- 6.6 Conclusion and Future Perspective -- References -- Chapter 7 Algal-Bacterial Interactions in Environment: Emerging Applications -- 7.1 Introduction -- 7.2 Microalgal Bacteria Interactions in Natural Environments -- 7.3 Biotechnological Applications of Microalgal-Bacterial Interactions -- 7.4 Conclusion and Future Prospects -- Acknowledgements -- References -- Chapter 8 Sustainable Bio-Applications of Diatom Silica as Nanoarchitectonic Material -- 8.1 Introduction -- 8.2 Diatomaceous Nanostructures - A Living Source of Biogenic Silica -- 8.2.1 Biophysical Properties -- 8.2.2 Mechanical Properties -- 8.2.3 Chemical Properties -- 8.2.4 Optical Properties -- 8.2.5 Electronic Properties -- 8.2.6 Metallurgical Properties -- 8.3 Scientometric Analysis -- 8.4 Nanofabrication Techniques to Prepare Hierarchical Biosilica Matrix -- 8.4.1 Atomic Force Microscopy (AFM) -- 8.4.2 Transmission Electron Microscopy (TEM) -- 8.4.3 X-Ray Photoelectron Spectroscopy (XPS) -- 8.4.4 Surface-Enhanced Raman Scattering (SERS) -- 8.4.5 Fourier-Transform Infrared Spectroscopy (FTIR) -- 8.4.6 X-Ray Powder Diffraction (XRD) -- 8.5 Application Based on Diatoms Silica Nanomaterials -- 8.5.1 Biotemplates -- 8.5.2 Bioprinting -- 8.5.3 Biosensors -- 8.5.4 Biofiltration -- 8.5.5 Biocomposites -- 8.5.6 Biomimetic Analogues -- 8.5.7 Biomanufacturing Technology -- 8.6 Challenges Encountered in Diatom-Inspired Nanostructure Technologies -- 8.6.1 Photonic Nanotechnology -- 8.6.2 Bioreactor Nanotechnology -- 8.7 Conclusion. , Authorship Contribution -- References -- Chapter 9 Algal Biofuel: A Promising Source of Green Energy -- 9.1 Introduction -- 9.2 Algae -- 9.3 Cultivation of Microalgae -- 9.3.1 Closed System -- 9.3.2 Open System -- 9.3.3 Hybrid System -- 9.4 Harvesting of Microalgae -- 9.5 Algal Biofuels -- 9.5.1 Biodiesel Production -- 9.5.2 Bioethanol Production -- 9.5.3 Biogas Production -- 9.5.4 Biohydrogen Production -- 9.5.5 Bio-Oil and Syngas Production -- 9.6 Current Status and Bottlenecks -- 9.7 Conclusion -- Competing Interest -- References -- Chapter 10 Life Cycle Assessment (LCA), Techno-Economic Analysis (TEA) and Environmental Impact Assessment (EIA) of Algal Biorefinery -- 10.1 Introduction -- 10.2 General Overview of Life Cycle Assessment -- 10.3 Tools Used for the LCA and Impact Assessment Analysis -- 10.3.1 SimaPro -- 10.3.2 openLCA -- 10.3.3 One Click LCA -- 10.3.4 GaBi -- 10.3.5 BEES (Building for Environmental and Economic Sustainability) -- 10.3.6 esg.tech -- 10.3.7 Ecoinvent Database -- 10.4 Methods, Framework, and LCA and LCIA of the Algal-Biorefinery -- 10.4.1 Component and Parameters for LCA of Algal Biorefinery -- 10.5 Comprehensive Reviews of LCA and LCIA for Different Algal Biorefineries Processes -- 10.6 LCA of the Microalgae-Based Biorefinery Supply Network and the Need for Integrated Biorefineries -- 10.7 Role of LCA and LCIA in Policy Decisions Based on Algal Biorefineries -- 10.8 Conclusions -- Competing Interest -- Funding & -- Acknowledgment -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Industrial microbiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (728 pages)
    Edition: 1st ed.
    ISBN: 9789811652141
    DDC: 660.62
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- Editor and Contributors -- 1: Understanding the Small World: The Microbes -- 1.1 Introduction to Microbiology and Microbes -- 1.1.1 Microbes -- 1.1.2 The History of Uncovering the Mystery of Microorganisms -- 1.1.3 Types of Microorganisms -- 1.1.4 The Two Types of Cells: The Eukaryotes and Prokaryotes -- 1.1.5 The Three Lineages of Microbial Life -- 1.1.6 The Prokaryotes (Bacteria) -- 1.1.7 The Prokaryote (Archaea) -- 1.1.8 The Eukaryotes (Algae) -- 1.1.9 The Eukaryotes (Fungi) -- 1.1.10 The Eukaryote (Protozoa) -- 1.1.11 The Eukaryote (Viruses) -- 1.2 How We Look at the Small World of Microbes -- 1.2.1 Difference Between Prokaryotes and Eukaryotes -- 1.2.2 Microscopic Analysis of Microorganisms -- 1.2.2.1 Types of Microscopy -- 1.3 Prokaryotes Diversity -- 1.3.1 Archaea -- 1.4 Viruses, Viroids, Virusoids and Prions -- 1.4.1 Classification of Virus -- 1.4.1.1 Morphology: Helical Symmetry and Icosahedral Symmetry -- 1.4.1.2 Morphology: Complex Viral Structure -- 1.4.1.3 Morphology: Presence and Absence of Envelope -- 1.4.1.4 Chemical Composition and Mode of Replication -- DNA Viruses -- RNA Viruses -- DNA-RNA Viruses -- ICTV Classification -- Baltimore Classification (1971) -- 1.5 Tools and Techniques of Microbiology -- 1.5.1 Isolation of Microorganisms -- 1.5.1.1 Methods of Isolation -- 1.5.2 Types of Nutritional Requirements and Media -- 1.5.2.1 Classification of Media on Physical State -- 1.5.2.2 Classification of Media on Composition -- 1.5.2.3 Classification of Media on Function -- 1.6 Microbial Nutrition -- 1.6.1 Nutritional Classification of Prokaryotes -- 1.6.1.1 Modes of Nutrition in Prokaryotes -- 1.6.2 Microorganisms Employ Metabolic Pathways to Metabolize Glucose and Other Biomolecules -- 1.7 Growth in Microbes -- 1.7.1 Factors Affecting Microbial Growth. , 1.7.2 Microbial Growth Kinetics -- 1.7.2.1 Measurement of Microbial Growth Kinetics -- 1.8 Maintenance and Preservation of Microbial Cultures -- 1.9 Strain Improvement -- 1.9.1 Applications of Mutation -- 1.9.2 Recombination -- 1.10 Microbe-Human Interdependence -- 1.10.1 Health and Disease -- 1.10.2 Gut Microbiome -- 1.10.3 Emerging and Re-emerging Diseases -- 1.10.4 Epidemic and Pandemic Diseases and Microbes -- 1.11 Benefits of Microbial Activity in Food and Industry -- 1.11.1 Application -- 1.12 Conclusion -- References -- 2: Bacteria and Their Industrial Importance -- 2.1 Introduction -- 2.2 Fermentation: Stages and Product Formation Process -- 2.2.1 Upstream Processing (USP) -- 2.2.2 Downstream Processing (DSP) -- 2.3 Products of Microbial Fermentation -- 2.3.1 Enzymes -- 2.3.2 Antibiotics -- 2.3.3 Organic Acids -- 2.3.4 Amino Acids and Insulin -- 2.3.5 Bioethanol -- 2.3.6 Bioinsecticides -- 2.3.7 Other Products and Applications -- 2.4 Prospects for India in the Industrial Microbiology Sector -- 2.5 Conclusion -- References -- 3: Industrial Perspectives of Fungi -- 3.1 Introduction -- 3.2 Fungal Products -- 3.2.1 Metabolites -- 3.2.2 Enzymes -- 3.2.3 Biomass -- 3.3 Fermentation -- 3.3.1 Types of Fermentation -- 3.3.1.1 Solid-State Fermentation -- 3.3.1.2 Submerged Fermentation -- 3.3.1.3 Batch Cultivation -- 3.3.2 Substrates Used in Fermentation and Type of Fermentation Used for Different Biomolecule Production -- 3.3.2.1 Type of Fermentation Used for Enzyme Production -- Type of Fermentation Used for Fungal Enzyme Production -- 3.3.2.2 Type of Fermentation Used for Antibiotic Production -- 3.3.2.3 Batch Cultivation for Biomolecule Production -- 3.3.3 Products from Fermentation -- 3.3.3.1 Primary Metabolites -- Enzyme Production -- Organic Acids -- Biocontrol Agents -- Vitamins -- 3.3.3.2 Secondary Metabolites -- Antibiotics -- 3.3.3.3 Biofuels. , 3.3.4 Production of Alcohol -- 3.3.4.1 Alcoholic Products -- Production of Wine -- Production of Beer -- 3.4 Fungi in the Drug Industry -- 3.4.1 Antibiotics -- 3.4.1.1 Penicillin -- 3.4.1.2 Cephalosporins -- 3.4.2 Immune Suppressants -- 3.4.2.1 Cyclosporin A -- 3.4.2.2 Ergot Alkaloids -- 3.4.2.3 Statins -- 3.5 Fungi in Food Processing -- 3.5.1 Cheese and Fungi -- 3.5.1.1 Moldy Cheeses -- 3.5.2 Food Flavor and Color -- 3.6 Conclusion -- References -- 4: Microbial Fermentation: Basic Fundamentals and Its Dynamic Prospect in Various Industrial Applications -- 4.1 Introduction -- 4.2 Types of Fermentation Based on Substrate Used -- 4.2.1 Surface Fermentation -- 4.2.2 Solid-State Fermentation -- 4.2.3 Submerged Fermentation (SmF) -- 4.3 Types of Fermentation Based on the Availability of Oxygen -- 4.3.1 Aerobic Fermentation -- 4.3.2 Anaerobic Fermentation -- 4.4 Processes of Fermentation -- 4.4.1 Lactic Acid Fermentation -- 4.4.2 Alcoholic Fermentation -- 4.5 Kinetics During Fermentation -- 4.6 Kinetics in Continuous Culture -- 4.6.1 Fed-Batch Culture -- 4.7 Different Media Formulation for Fermentation and Optimization of Media Components -- 4.7.1 Nutritional Requirements -- 4.7.1.1 Carbon Source -- 4.7.1.2 Nitrogen Source -- 4.7.1.3 Inorganic Salts -- 4.7.2 Effect of Physical Parameters -- 4.8 Cell Reactors Used in Fermentation -- 4.8.1 Immobilized Cell Reactor -- 4.8.2 Immobilized Enzyme Bioreactors -- 4.9 Application of Natural Substrates in Fermentation in Industrial Production of Bioactive Compounds -- 4.10 Conclusions -- References -- 5: Fermenter Design -- 5.1 Introduction -- 5.2 Fermenter Systems -- 5.2.1 Functions of Fermenter -- 5.3 Parts of Fermenter -- 5.3.1 Construction Materials -- 5.3.2 Temperature Control -- 5.3.3 Aeration and Agitation -- 5.3.3.1 The Agitator (Impeller) -- 5.3.3.2 Stirrer Glands and Bearings -- 5.3.3.3 Baffles. , 5.3.3.4 The Aeration System (Sparger) -- 5.3.4 Feed Ports -- 5.3.5 Sensor Probes -- 5.3.6 Foam Control -- 5.3.7 Valves and Steam Traps -- 5.3.8 The Achievement and Maintenance of Aseptic Conditions -- 5.3.8.1 Sterilization of a Fermenter -- 5.4 Properties of an Ideal Fermenter -- 5.4.1 The Ability to Provide Contained Conditions -- 5.4.2 The Ability to Provide an Ideal Working Environment -- 5.4.3 The Construction Material -- 5.4.4 The Shape of the Fermenter -- 5.4.5 The Dimensions of Fermenter Parts -- 5.4.6 Aeration and the Impeller Velocity -- 5.5 Types of Industrial Fermenters/Bioreactors -- 5.5.1 Continuous Stirred Tank Reactor -- 5.5.2 Batch Fermenter -- 5.5.3 Tower Fermenter -- 5.5.4 Gas Lift Fermenter -- 5.5.5 Deep Jet Fermenter -- 5.5.6 Packed Bed Reactor -- 5.5.7 Fluidized Bed Reactor -- 5.5.8 Photobioreactor -- 5.5.9 Wave Bioreactors -- 5.5.10 Membrane Bioreactor -- 5.5.11 Sparged Tank Bioreactor -- 5.5.12 High-Density Bioreactor -- 5.5.13 Microbioreactors -- 5.5.14 Rotating Bed Biofilm Reactor -- 5.6 Stirred Tank Reactors -- 5.6.1 Geometry of CSTR -- 5.6.2 Impeller -- 5.6.3 Modelling of Ideal CSTR -- 5.6.4 Gas Delivery System -- 5.7 Strategies for Gases, Nutrient Solution, and Media Sterilization for Industrial Fermentation -- 5.7.1 Strategy for Medium Sterilization -- 5.7.2 Strategies of Gas Sterilization -- 5.8 Industrial Fermentation Processes -- 5.8.1 Microbial Biomass -- 5.8.2 Microbial Enzymes -- 5.8.3 The Recombinant Products -- 5.9 Scaling Up of Industrial Fermenters -- 5.9.1 Key Considerations for Fermentation Scale-Up -- 5.10 Regulation of Industrial Fermentation Via Advanced Instrumentations and Computations -- 5.10.1 Monitoring Software -- 5.10.2 Monitoring of Stress Responses in Recombinant Fermentation Processes -- 5.10.3 Multi-bioreactor Systems -- 5.11 Conclusion -- References -- 6: Strain Improvement of Microbes. , 6.1 Strain Improvement -- 6.1.1 Strain Improvement: Why Is It Important? -- 6.2 Evolution of Strategies in Strain Improvement -- 6.3 Functional Genomics: Forward and Reverse Genetics -- 6.3.1 Impure Cultures -- 6.3.2 Competitive Suppression -- 6.3.3 Metabolic Regulation -- 6.3.4 Expression Delay -- 6.4 Screening of Mutants -- 6.5 Bioinformatics for Strain Improvement -- 6.6 Tools for Metabolic Models -- 6.6.1 E-Cell -- 6.6.2 GEPASI -- 6.6.3 DBSolve -- 6.6.4 SCAMP/Jarnac -- 6.7 Analysis of Genetic Sequences -- 6.7.1 Accessing Biological Databases -- 6.7.2 Optimizing Search Within a Database -- 6.7.3 Comparing Sequences Based on Percentage Similarity -- 6.7.4 BLAST (Basic Local Alignment Search Tool) -- 6.7.5 HMM (Hidden Markov Model) -- 6.8 Gene Expression Profiling -- 6.9 Handling Sequencing Data -- 6.10 Microarray Analysis -- 6.11 Proteome Analysis -- 6.12 Conclusion -- References -- 7: Enzyme Kinetics: A Plethora of Information -- 7.1 Introduction -- 7.2 Basic of Kinetics -- 7.3 The Reaction Rates and Order -- 7.3.1 First-Order Reaction: Irreversible Reaction -- 7.3.2 First-Order Reaction: Reversible Reaction -- 7.3.3 Second-Order Reaction -- 7.4 Michaelis-Menten Equation -- 7.5 Other Kinetic Models -- 7.5.1 Biphasic Kinetics -- 7.5.2 Multienzyme Kinetics -- 7.5.3 Homotropic Cooperativity -- 7.5.4 Heterotrophic Cooperativity -- 7.5.5 Substrate Inhibition -- 7.6 Enzyme Kinetics: A Multidisciplinary Interest -- 7.7 Enzyme Kinetics: Simulation -- 7.8 Conclusion -- References -- 8: Asparaginase: Production, Harvest, Recovery, and Potential Industrial Application -- 8.1 Introduction -- 8.2 Sources of Microbial Asparaginase -- 8.2.1 Bacterial Sources -- 8.2.2 Fungal Sources -- 8.2.3 Yeast Sources -- 8.2.4 Actinomyces Sources -- 8.2.5 Algal Sources -- 8.2.6 Plant Sources -- 8.3 Asparaginase Production -- 8.3.1 Submerged Fermentation. , 8.3.2 Solid-State Fermentation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Catalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (384 pages)
    Edition: 1st ed.
    ISBN: 9789811943126
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Microalgae. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (259 pages)
    Edition: 1st ed.
    ISBN: 9789811907937
    Series Statement: Clean Energy Production Technologies Series
    DDC: 579.8
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Microalgae. ; Microalgae-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (239 pages)
    Edition: 1st ed.
    ISBN: 9789811906800
    Series Statement: Clean Energy Production Technologies Series
    DDC: 579.8
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Biomass conversion. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (296 pages)
    Edition: 1st ed.
    ISBN: 9789811943164
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Industrial microbiology. ; Medical microbiology. ; Microbial ecology.
    Description / Table of Contents: The second volume of the Book-Industrial Microbiology and Biotechnology covers various emerging concepts in microbial technology which have been developed to harness the potential of the microbes. The book examines the microbes-based products that have widespread applications in various domains i.e., agriculture, biorefinery, bioremediation, pharmaceutical, and medical sectors. It focusses on recent advances and emerging topics such as CRISPR technology, advanced topics of genomics, including functional genomics, metagenomics, metabolomics, and structural and system biology approaches for enhanced production of industrially relevant products. It further gives an insight into the advancement of genetic engineering with special emphasis on value-added products via microalgal systems and their techno-economics analysis and life cycle assessment. The book towards the end presents recent advancements in the use of microbes for the production of industrial relevant enzymes, amino acids, vitamins, and nutraceuticals, on vaccine development and their biomedical applications. The book is an essential source for researchers working in allied fields of microbiology, biotechnology, and bioengineering.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXI, 748 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9789819928163
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...