GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Algae. ; Electronic books.
    Description / Table of Contents: This book offers complete coverage of algae refinery, including up-and down-stream process while proposing an integrated algal refinery for advancement of existing technologies and summarizing the strategies and future perspectives of algal refinery.
    Type of Medium: Online Resource
    Pages: 1 online resource (267 pages)
    Edition: 1st ed.
    ISBN: 9781003828709
    Series Statement: Greener Technologies for Sustainable Industry and Environment Series
    DDC: 660.6
    Language: English
    Note: Cover -- Half Title -- Series -- Title -- Copyright -- Dedication -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- About the Editors -- List of Contributors -- Chapter 1 Introduction to Microalgae and Its Refinery -- 1.1 Introduction -- 1.2 Classification and Overview of the Microalgae -- 1.3 Upstream and Downstream Processing of Microalgae -- 1.3.1 Microalgae Cultivation -- 1.3.2 Downstream Processing -- 1.4 Algae Biorefinery and Applications of Its Products -- 1.4.1 Bioenergy Products -- 1.4.2 Pharmaceuticals -- 1.4.3 Cosmetics -- 1.4.4 Chemicals -- 1.4.5 Food products -- 1.4.6 Environmental Applications -- 1.5 Future Prospects and Conclusions -- Acknowledgments -- References -- Chapter 2 Phycoremediation: A Sustainable Alternative for Removing Emerging Contaminants from Wastewater -- 2.1 Introduction -- 2.2 Emerging Contaminants (ECs) -- 2.2.1 Organic Contaminants -- 2.2.2 Inorganic Contaminants -- 2.3 Methods for Removing Emerging Contaminants from Wastewater -- 2.3.1 Traditional Methods -- 2.3.2 Modern Methods -- 2.4 Mechanism Used by Microalgae for Bioremediation -- 2.4.1 Microalgal Biosorption of ECs -- 2.4.2 Bio-Uptake of ECs -- 2.4.3 Photodegradation and Volatilization -- 2.4.4 Biodegradation of ECs by Microalgae -- 2.4.5 Bioaccumulation -- 2.4.6 Co-culturing of Microalgae to Remove ECs -- 2.5 Conclusion -- References -- Chapter 3 Advances in Cultivation and Emerging Application of Chlorella vulgaris: A Sustainable Biorefinery Approach -- 3.1 Introduction -- 3.2 Chlorella vulgaris -- 3.2.1 Growth Factors -- 3.2.2 Environmental Factors -- 3.2.3 Metabolic Pathways -- 3.2.4 Cultivation Systems -- 3.3 Culture Medium System -- 3.3.1 Synthetic Mediums -- 3.3.2 Organic Mediums -- 3.4 Biomass Harvesting -- 3.4.1 Centrifugation -- 3.4.2 Flocculation -- 3.4.3 Flotation -- 3.4.4 Filtration -- 3.4.5 Sedimentation. , 3.5 Methods for Extraction -- 3.6 Found in the Market with Different Applications -- 3.6.1 Biofuels -- 3.6.2 Human Nutrition -- 3.6.3 Animal Feed -- 3.6.4 Cosmetology, Nutraceutical, and Pharmaceutical -- 3.7 Future Perspectives -- 3.8 Conclusion -- Acknowledgments -- References -- Chapter 4 Algae Based Nutrient Recovery from Different Waste Streams -- 4.1 Introduction -- 4.2 Algae and Their Role in Biotechnology -- 4.3 Nutrients from Wastewater Streams -- 4.3.1 Municipal Wastewater -- 4.3.2 Agricultural Wastewater -- 4.3.3 Industrial Wastewater -- 4.4 Technologies to Recover Nutrients from Waste Streams -- 4.4.1 Algae-Based Technologies -- 4.5 Mechanism of Nutrient Recovery -- 4.5.1 Carbon -- 4.5.2 Nitrogen -- 4.5.3 Phosphorus -- 4.5.4 Other Nutrients -- 4.6 Challenges and Limitations -- 4.7 Conclusions -- Acknowledgments -- References -- Chapter 5 Potential Applications of Algae Biomass for the Development of Natural Products -- 5.1 Introduction -- 5.2 Algae-Based Energy Production -- 5.2.1 Biofuels -- 5.2.2 Bioethanol -- 5.2.3 Biohydrogen -- 5.2.4 Biomethane -- 5.2.5 Biobutanol -- 5.3 Biopotential of Algae-Based Products -- 5.3.1 Polyunsaturated Fatty Acids (PUFAs) -- 5.3.2 Sterols -- 5.3.3 Carotenoids -- 5.3.4 Polysaccharides -- 5.3.5 Vitamins -- 5.3.6 Microalgal Proteins -- 5.3.7 Phycobiliproteins -- 5.3.8 Livestock and Agriculture -- 5.4 Algae-Based Companies -- 5.5 Conclusions, Challenges, and Future Perspectives -- Acknowledgments -- References -- Chapter 6 Algal Metal Remediation for Contaminated Source -- 6.1 Introduction -- 6.2 Sources of Heavy Metals (HMs) -- 6.3 Impact of HMs -- 6.3.1 Effects on Soil -- 6.3.2 Effects on Water -- 6.3.3 Effects on Air -- 6.3.4 Effects on Aquatic Ecosystem -- 6.4 Phycoremediation: An Algal Mechanism to Eradicate Pollution -- 6.4.1 Extracellular Uptake (Biosorption). , 6.4.2 Intracellular Uptake (Bioaccumulation and Compartmentalization) -- 6.5 Strategies to Improve the Bioremediation Ability of Algae -- 6.5.1 Algal Metal Transportation -- 6.5.2 Metal Chelation -- 6.5.3 Metal Biotransformation -- 6.5.4 Oxidative Stress Response Regulation -- 6.5.5 Metal Stress Response Regulation -- 6.5.6 Bioengineering of Algal Cell Surface -- 6.6 Conclusion and Future Perspective -- References -- Chapter 7 Algal-Bacterial Interactions in Environment: Emerging Applications -- 7.1 Introduction -- 7.2 Microalgal Bacteria Interactions in Natural Environments -- 7.3 Biotechnological Applications of Microalgal-Bacterial Interactions -- 7.4 Conclusion and Future Prospects -- Acknowledgements -- References -- Chapter 8 Sustainable Bio-Applications of Diatom Silica as Nanoarchitectonic Material -- 8.1 Introduction -- 8.2 Diatomaceous Nanostructures - A Living Source of Biogenic Silica -- 8.2.1 Biophysical Properties -- 8.2.2 Mechanical Properties -- 8.2.3 Chemical Properties -- 8.2.4 Optical Properties -- 8.2.5 Electronic Properties -- 8.2.6 Metallurgical Properties -- 8.3 Scientometric Analysis -- 8.4 Nanofabrication Techniques to Prepare Hierarchical Biosilica Matrix -- 8.4.1 Atomic Force Microscopy (AFM) -- 8.4.2 Transmission Electron Microscopy (TEM) -- 8.4.3 X-Ray Photoelectron Spectroscopy (XPS) -- 8.4.4 Surface-Enhanced Raman Scattering (SERS) -- 8.4.5 Fourier-Transform Infrared Spectroscopy (FTIR) -- 8.4.6 X-Ray Powder Diffraction (XRD) -- 8.5 Application Based on Diatoms Silica Nanomaterials -- 8.5.1 Biotemplates -- 8.5.2 Bioprinting -- 8.5.3 Biosensors -- 8.5.4 Biofiltration -- 8.5.5 Biocomposites -- 8.5.6 Biomimetic Analogues -- 8.5.7 Biomanufacturing Technology -- 8.6 Challenges Encountered in Diatom-Inspired Nanostructure Technologies -- 8.6.1 Photonic Nanotechnology -- 8.6.2 Bioreactor Nanotechnology -- 8.7 Conclusion. , Authorship Contribution -- References -- Chapter 9 Algal Biofuel: A Promising Source of Green Energy -- 9.1 Introduction -- 9.2 Algae -- 9.3 Cultivation of Microalgae -- 9.3.1 Closed System -- 9.3.2 Open System -- 9.3.3 Hybrid System -- 9.4 Harvesting of Microalgae -- 9.5 Algal Biofuels -- 9.5.1 Biodiesel Production -- 9.5.2 Bioethanol Production -- 9.5.3 Biogas Production -- 9.5.4 Biohydrogen Production -- 9.5.5 Bio-Oil and Syngas Production -- 9.6 Current Status and Bottlenecks -- 9.7 Conclusion -- Competing Interest -- References -- Chapter 10 Life Cycle Assessment (LCA), Techno-Economic Analysis (TEA) and Environmental Impact Assessment (EIA) of Algal Biorefinery -- 10.1 Introduction -- 10.2 General Overview of Life Cycle Assessment -- 10.3 Tools Used for the LCA and Impact Assessment Analysis -- 10.3.1 SimaPro -- 10.3.2 openLCA -- 10.3.3 One Click LCA -- 10.3.4 GaBi -- 10.3.5 BEES (Building for Environmental and Economic Sustainability) -- 10.3.6 esg.tech -- 10.3.7 Ecoinvent Database -- 10.4 Methods, Framework, and LCA and LCIA of the Algal-Biorefinery -- 10.4.1 Component and Parameters for LCA of Algal Biorefinery -- 10.5 Comprehensive Reviews of LCA and LCIA for Different Algal Biorefineries Processes -- 10.6 LCA of the Microalgae-Based Biorefinery Supply Network and the Need for Integrated Biorefineries -- 10.7 Role of LCA and LCIA in Policy Decisions Based on Algal Biorefineries -- 10.8 Conclusions -- Competing Interest -- Funding & -- Acknowledgment -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...