GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (252 pages)
    ISBN: 9780323911436
    Series Statement: Developments in Applied Microbiology and Biotechnology Series
    DDC: 579
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Dyes and dyeing-Biodegradation. ; Photocatalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (796 pages)
    ISBN: 9780128242025
    DDC: 660/.2995
    Language: English
    Note: Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Novel photocatalytic techniques for organic dye degradation in water -- 1.1 An overview of dye pollution and classification -- 1.2 Existing treatment options -- 1.3 Photocatalysis: basic principle -- 1.4 Novel photocatalytic approaches -- 1.4.1 Titanium dioxide and strategies for improving photoactivity of TiO2 -- 1.4.2 Metal oxides/sulfide/nanocomposites -- 1.4.3 Layered nanocomposites -- 1.5 Mechanisms of photocatalysis: schemes involved in photocatalytic degradation -- 1.6 Type-II heterostructure semiconductors -- 1.6.1 p-n junction semiconductor -- 1.6.2 Z-scheme semiconductor -- 1.7 Factors affecting photocatalysis/photodegradation -- 1.7.1 Effect of pH -- 1.7.2 Effect of irradiation intensity -- 1.7.3 Effect of temperature -- 1.7.4 Effect of photocatalyst loading -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2 Effect of operating parameters on photocatalytic degradation of dyes by using graphitic carbon nitride -- 2.1 Introduction -- 2.1.1 Photocatalysis -- 2.1.2 Photocatalyst -- 2.2 Graphitic carbon nitride (g - C3N4) photocatalyst -- 2.2.1 Synthesis techniques of g - C3N4 -- 2.2.2 Modifications of g - C3N4 -- 2.2.3 Composites of g - C3N4 -- 2.3 Degradation of dyes -- 2.4 Operating parameters in photocatalytic degradation -- 2.4.1 Effect of pH -- 2.4.2 Effect of catalyst concentration -- 2.4.3 Effect of light intensity -- 2.4.4 Effect of irradiation time -- 2.4.5 Effect of oxidizing agents -- 2.5 Conclusion -- References -- Chapter 3 Photocatalytic degradation of organic dyes using heterogeneous catalysts -- 3.1 Introduction -- 3.1.1 Types of dyes -- 3.1.2 Type of photocatalysts used -- 3.2 TiO2 catalyst -- 3.2.1 Principle of TiO2 photocatalysis and mechanistic pathways -- 3.2.2 Parameters affecting the photocatalytic degradation. , 3.2.3 Modification of TiO2 -- 3.3 ZnO as catalyst -- 3.3.1 Principle of ZnO photocatalysis and mechanistic pathways -- 3.3.2 Parameters affecting the photocatalytic degradation -- 3.3.3 Modification of ZnO -- 3.4 Other photocatalyst -- 3.5 Degradation study of dyes -- 3.6 Conclusion and outlook -- References -- Chapter 4 Effective materials in the photocatalytic treatment of dyestuffs and stained wastewater -- 4.1 Introduction -- 4.2 Various techniques used for removal of dye from wastewater -- 4.2.1 Adsorption technique -- 4.2.2 Ion exchange -- 4.2.3 Membrane filtration technique -- 4.2.4 Electrochemical method -- 4.2.5 Bioremediation and biodegradation -- 4.2.6 Advanced oxidation process -- 4.3 Photocatalysis -- 4.3.1 Mechanism of photocatalysis -- 4.3.2 Influences of several parameters on photocatalysis -- 4.4 Various dyes that can be treated by photolysis -- 4.4.1 Methylene blue -- 4.4.2 Methyl orange -- 4.4.3 Rhodamine B -- 4.4.4 Malachite green -- 4.4.5 Indigo carmine -- 4.5 Future Scope -- References -- Chapter 5 Sonophotocatalytic degradation of refractory textile dyes -- 5.1 Introduction -- 5.2 Sonochemical process -- 5.3 Photocatalytic process -- 5.4 Sonophotocatalytic reactors -- 5.5 Dyes degradation by sonophotocatalysis -- 5.6 Does sonoluminescence activate photocatalyst? -- 5.7 Source of synergism in sonophotocatalysis -- 5.8 Influencing factors -- 5.8.1 Ultrasonic power -- 5.8.2 Catalyst dosage -- 5.8.3 Dye concentration -- 5.8.4 Solution pH -- 5.8.5 Saturation gases -- 5.8.6 Effect of additives -- 5.9 Conclusions and future perspectives -- References -- Chapter 6 High photocatalytic activity under visible light for dye degradation -- 6.1 Introduction -- 6.2 Fundamentals of photocatalytic dye-degradation reactions -- 6.2.1 Photocatalytic dye degradation reactions mechanism -- 6.2.2 Photocatalytic dye-degradation measurement techniques. , 6.3 Different factors affecting photocatalytic dye degradation -- 6.4 Syntheses of UV-Visible/visible light active photocatalysts -- 6.4.1 Synthesis of TiO2@C nanocomposites -- 6.4.2 Synthesis of MoS2 nanoplatelets, nanorods, and nanosheets -- 6.4.3 Synthesis of flower-like ZnO@MoS2 heterostructures (ZMH) -- 6.5 Structural, optical, and methylene blue dye degradation properties -- 6.5.1 TiO2@C nanocomposites -- 6.5.2 Different MoS2 nanostructures -- 6.5.3 Flower-like ZnO@MoS2 nanostructures -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Green and sustainable methods of syntheses of photocatalytic materials for efficient application in dye degradation -- 7.1 Introduction -- 7.2 Environmental concern of organic toxic pollutants -- 7.3 Semiconductor nanomaterials as photocatalyst -- 7.3.1 Strategies for improvement of photocatalytic Performance of Semiconductor nanomaterials -- 7.4 Limitations of traditional synthesis methods -- 7.5 Green approach for synthesis of ZnO-based composites materials -- 7.6 Laboratory syntheses of ZnO nanoparticles -- 7.6.1 Phase determination by XRD and morphology analyses -- 7.6.2 Raman data analysis -- 7.6.3 XPS and FTIR data analyses -- 7.6.4 Optical properties of the nanocomposite materials -- 7.7 Photocatalytic mechanism -- 7.7.1 Sun Light-driven photocatalytic dye degradation activity -- 7.8 Several applications of ZnO and ZnO-rGO nanocomposites -- 7.8.1 Self-cleaning property of cotton fabric under sunlight -- 7.8.2 Self-cleaning property of cotton fabric with different cleaning agents under sunlight -- 7.9 Summary -- 7.10 Conclusions and future scope -- Acknowledgement -- References -- Chapter 8 Hybrid systems to improve photo-based processes and their importance in the dye degradation -- 8.1 Introduction -- 8.2 Hybrid systems -- 8.2.1 Common operational aspects effect. , 8.2.2 Photocatalysis-oxidant addition -- 8.2.3 Fenton-photocatalysis -- 8.2.4 Photocatalysis-electro -- 8.2.5 Photocatalysis-electro-Fenton -- 8.2.6 Sono-photocatalysis -- 8.2.7 Adsorption-photocatalysis -- 8.2.8 Membrane-photocatalysis -- 8.2.9 Photocatalysis-biodegradation -- 8.3 General considerations -- 8.3.1 Hybrid process selection -- 8.3.2 Scale-up considerations -- 8.4 Conclusions -- References -- Chapter 9 Photocatalytic metal nanoparticles: a green approach for degradation of dyes -- 9.1 Introduction -- 9.2 Green synthesis of Zinc oxide (ZnO) NPs -- 9.3 Green synthesis of titanium dioxide (TiO2) NPs -- 9.4 Green synthesis of Copper oxide (CuO/Cu2O) NPs -- 9.5 Photocatalytic degradation of toxic dyes -- 9.6 Application of photocatalysts -- 9.7 Mechanism of dye degradation -- 9.7.1 pH -- 9.7.2 Light intensity and irradiation time -- 9.7.3 Photocatalysts load -- 9.7.4 Initial dye concentration -- 9.7.5 Temperature -- 9.8 The bottlenecks of photocatalytic dye degradation using NPs -- 9.9 Reusability of NPs -- 9.10 Aggregation of NPs -- 9.11 Toxicity of NPs -- 9.12 Hybrid systems for dye removal -- 9.13 Conclusions -- References -- Chapter 10 A facile biogenic-mediated synthesis of Ag nanoparticles over anchored ZnO for enhanced photocatalytic degradation of organic dyes -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Materials -- 10.2.2 Preparation of bark extract -- 10.2.3 Green synthesis of Ag@ZnO -- 10.2.4 Characterization -- 10.2.5 Photocatalytic activity -- 10.2.6 Reuse and recyclability test -- 10.3 Results and discussion -- 10.3.1 Characterization of the catalyst -- 10.3.2 Photocatalytic degradation study -- 10.3.3 Stability and reuse study -- 10.3.4 Plausible photocatalytic reaction mechanism of MB and CR dye degradation -- 10.4 Conclusion -- Acknowledgments -- References. , Chapter 11 Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes -- 11.1 Introduction -- 11.2 Problems associated with dyes -- 11.3 Green synthesis and characterization of nanoparticles -- 11.3.1 Characterization techniques -- 11.3.2 UV-visible spectroscopy -- 11.3.3 X-ray diffraction (XRD) -- 11.3.4 Fourier transform infrared (FTIR) spectroscopy -- 11.3.5 Atomic force microscopy (AFM) -- 11.3.6 Scanning electron microscopy (SEM) -- 11.3.7 Transmission electron microscopy (TEM) -- 11.4 Metallic nanoparticles -- 11.5 Fungal-mediated nanoparticles synthesis -- 11.6 Plant-mediated nanoparticles synthesis -- 11.7 Mechanism of dye degradation by metal nanoparticles -- 11.7.1 Direct photocatalytic degradation -- 11.7.2 Indirect or sensitization-mediated degradation -- 11.8 Factors influencing degradation of dyes -- 11.8.1 pH -- 11.8.2 Concentration of nanoparticles -- 11.8.3 Temperature -- 11.8.4 Irradiation time and light intensity -- 11.8.5 Concentration of dyes -- 11.9 Applications of nanoparticles in dye degradation -- 11.9.1 Fungal-mediated nanoparticles in dye degradation -- 11.9.2 Plant-mediated nanoparticles in dye degradation -- 11.10 Challenges -- 11.11 Conclusion -- References -- Chapter 12 Heterogeneous photocatalysis of organic dyes -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Types/categories of dyes -- 12.2.2 Advancement in degradation of organic dye under heterogeneous photocatalysis -- 12.3 The semiconductor surface for dye adsorption in dark -- 12.4 Dark adsorption of dyes and its efficiency -- 12.5 Photocatalyst details -- 12.5.1 Titanium dioxide -- 12.5.2 Other semiconductors -- 12.6 Photoreactor configurations -- 12.7 Photodecolorization of dye organics -- 12.7.1 Process variables and mechanism for absorption of light by semiconductor. , 12.7.2 Advanced oxidation processes incorporation with sonolysis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Scaling (Social sciences). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (514 pages)
    Edition: 1st ed.
    ISBN: 9780323907668
    Series Statement: Advances in Green and Sustainable Chemistry Series
    DDC: 541.37
    Language: English
    Note: Intro -- Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial electrochemical systems -- 1.1. Introduction -- 1.2. Classification of METs -- 1.2.1. Microbial fuel cells (MFCs) -- 1.2.2. Microbial electrolysis cells (MECs) -- 1.2.3. Microbial solar cells (MSCs) -- 1.2.4. Microbial electrosynthesis cells (MESCs) -- 1.2.5. Microbial desalination cells (MDCs) -- 1.3. Conclusion -- Acknowledgments -- References -- Chapter 2: A review on scaling-up of microbial fuel cell: Challenges and opportunities -- 2.1. Introduction -- 2.2. MFC theory -- 2.3. Research gap of MFC -- 2.4. Operational and electrochemical limitations of MFC analysis -- 2.4.1. MFC start-up process -- 2.4.2. Wastewater -- 2.4.3. Electrode materials -- 2.4.4. Anode material -- 2.4.5. Cathode material -- 2.4.6. Design of MFC -- 2.4.7. Electrical network of MFC -- 2.5. Technology development solution -- 2.6. Techno-economic viability -- 2.6.1. Advantages of MFC -- 2.7. Pilot scale to industrial scale of MFC -- 2.8. Application of microbial fuel cell to the social relevance -- 2.8.1. Electricity generation -- 2.8.2. Bio-hydrogen production -- 2.8.3. Wastewater treatment -- 2.8.4. Biosensor -- 2.8.5. Desalination plants -- 2.9. Recent developments -- 2.10. Future improvements -- 2.11. Conclusion -- References -- Chapter 3: Electroactive biofilm and electron transfer in microbial electrochemical systems -- 3.1. Introduction -- 3.2. Electroactive microorganisms (EAMs) -- 3.3. Formation of electroactive biofilms (EABFs) -- 3.3.1. Anodic EABFs -- 3.3.2. Cathodic EABFs -- 3.4. Electron transfer mechanism -- 3.4.1. Anodic electron transfer -- 3.4.2. Cathodic electron transfer -- 3.5. Effect of design, operational, and biological parameters on electroactivity of EABFs -- 3.5.1. Design parameters. , 3.5.1.1. Effect of electrode materials and their characteristics -- 3.5.1.2. Influence of applied voltage or potential -- 3.5.2. Operational parameters -- 3.5.2.1. Effect of substrate on EABFs -- 3.5.2.2. Effect of temperature on EABFs -- 3.5.2.3. Effect of pH on EABFs -- 3.5.3. Biological parameters -- 3.6. Genetic engineering: An approach to enhance exoelectrogenesis -- 3.7. Applications of EABFs -- 3.8. Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4: Role of electroactive biofilms in governing the performance of microbial electrochemical system -- 4.1. Introduction -- 4.2. Role of electroactive biofilms in MES -- 4.3. Strategies for development of EAB -- 4.3.1. Natural growth of EAB -- 4.3.2. Artificial induction of EAB -- 4.4. Microbes in EAB -- 4.4.1. Anodic EAB -- 4.4.1.1. Pure culture -- 4.4.1.2. Mixed culture -- 4.4.2. Cathodic EAB -- 4.5. Electron transfer in EAB -- 4.5.1. Direct ET -- 4.5.2. Indirect ET -- 4.6. Methods to study EAB -- 4.7. Dynamic of EAB application -- 4.8. Conclusion and future prospects -- References -- Chapter 5: Electroactive biofilm and electron transfer in the microbial electrochemical system -- 5.1. Introduction -- 5.2. Electroactive microorganism and biofilm formation -- 5.3. Factors affecting electroactive biofilm formation -- 5.3.1. System architecture -- 5.3.2. Biological parameters -- 5.3.3. Operating parameters -- 5.3.3.1. Effect of external resistance and redox potential -- 5.3.3.2. Substrate concentration and loading -- 5.3.3.3. Other factors (pH, temperature, oxygen, and shear rate) -- 5.4. Electron transfer mechanism in MES -- 5.4.1. Direct electron transfer from cell to the electrode -- 5.4.2. Mediated electron transfer -- 5.5. Tools and techniques to study electroactive biofilms and microbial community analysis -- 5.6. Conclusion and future prospects -- References. , Chapter 6: Electroactive biofilm and electron transfer in MES -- 6.1. Introduction -- 6.2. Electroactive biofilms (EABs) -- 6.3. Anodic electroactive biofilm -- 6.4. Cathodic electroactive biofilm -- 6.5. Mechanism of electron within anodic EAB -- 6.6. Mechanisms of electron transfer in cathodic EABs -- 6.7. Tools and techniques used to study EABs -- 6.8. Applications of EABs -- 6.9. Conclusion -- References -- Chapter 7: Bioelectroremediation of wastes using bioelectrochemical system -- 7.1. Introduction -- 7.2. Drawbacks of conventional bioremediation -- 7.3. Phytoremediation -- 7.4. BES for ground water remediation -- 7.5. Practical obstacles in GW remediation suggests BES application -- 7.6. In situ bioelectroremediation: Ideal step -- 7.7. Bioelectroremediation: Future perspectives -- 7.8. Conclusion -- References -- Chapter 8: Fiber-reinforced polymer (FRP) as proton exchange membrane (PEM) in single chambered microbial fuel cells (MFCs) -- 8.1. Introduction -- 8.2. Proton exchange membranes (PEM) -- 8.3. Present study -- 8.4. Designing and fabrication of single-chambered MFCs -- 8.5. Natural fiber-reinforced polymer (FRP) composite as PEM in MFCs -- 8.6. Substrates used in MFCs -- 8.7. Inocula used in MFCs -- 8.8. Experimental design -- 8.9. Results in terms of electricity generation -- 8.10. Results in terms of COD removal -- 8.11. Results of the comparison of different proton exchange membrane (PEM) used in MFC with commercially available PEM-b ... -- 8.12. Results in terms of electricity generation -- 8.13. Results in terms of COD removal -- 8.14. Conclusions -- References -- Chapter 9: Effects of biofouling on polymer electrolyte membranes in scaling-up of microbial electrochemical systems -- 9.1. Introduction -- 9.2. Causes of biofouling in polymer electrolyte membrane -- 9.3. Mechanism of polymer electrolyte membrane biofouling. , 9.4. Effects of biofouling on MES performance -- 9.5. Methods to analyze membrane biofouling -- 9.6. Challenges confronted in scaling-up of MES -- 9.7. Preventive measures of membrane biofouling -- 9.7.1. Pretreatment of PEMs -- 9.7.2. Surface coatings on PEM -- 9.7.3. Polymer electrolyte membrane composites -- 9.7.4. Quorum Quenching for membrane antifouling -- 9.8. Conclusion -- References -- Chapter 10: Advancement in electrode materials and membrane separators for scaling up of MES -- 10.1. Introduction -- 10.2. Designing of reactor to scale-up -- 10.3. Electrode modification in scaling-up of MES -- 10.4. Membrane separators in MES -- References -- Chapter 11: Scale-up of bioelectrochemical systems: Stacking strategies and the road ahead -- 11.1. Introduction -- 11.2. Scale-up: Issues and strategies -- 11.3. Stacking of BESs -- 11.4. Voltage reversal and prevention -- 11.5. Pilot-scale BESs for hydrogen/methane production -- 11.6. Scaled-up BESs for bioremediation -- 11.7. Conclusions and future perspective -- References -- Chapter 12: Application of microbial electrochemical system for industrial wastewater treatment -- 12.1. Introduction -- 12.2. Energy recovery in wastewater treatment systems -- 12.3. Industrial wastewater generation and the ecotoxicological impacts of the pollutants -- 12.3.1. Heavy metals -- 12.3.2. Emerging contaminants -- 12.4. Industrial wastewater treatment in microbial electrochemical systems -- 12.4.1. Microbial fuel cell -- 12.4.2. Microbial electrolysis cell -- 12.4.3. Microbial desalination cell -- 12.5. Recent advancements in scaling up microbial electrochemical systems -- 12.5.1. Design of MES used in scale-up applications -- 12.5.2. Influencing parameters related to scale up -- 12.5.3. Application of MES in industrial companies: Current status -- 12.5.4. Current challenges and future perspective. , 12.6. Economic and life cycle assessment -- 12.7. Conclusion -- References -- Chapter 13: Metabolic engineering and synthetic biology key players for improving efficacy of microbial fuel cell technology -- 13.1. Introduction -- 13.2. Classification or types and design of MFC for electricity generation -- 13.3. Molecular mechanisms of electron transfer by diverse microbial regimes or electrogens for MFC technology -- 13.4. Existing physical- and chemical-based approaches for improving the MFC performance -- 13.4.1. Anode and cathode modifications -- 13.5. Existing pitfalls or drawbacks of existing MFC technology -- 13.6. Metabolic engineering and synthetic biology impacts on improving MFC performance -- 13.7. Conclusion and future outlook -- Acknowledgment -- References -- Chapter 14: Microbial electrochemical platform: A sustainable workhorse for improving wastewater treatment and desalination -- 14.1. Introduction -- 14.2. Classification and general discussion about microbial electrochemical platform toward wastewater treatment and desa ... -- 14.3. Potential role of existing native microbial regime in wastewater treatment and desalination -- 14.4. Metabolic engineering and synthetic biology impacts on improving strains or M/Os to improve the performance of MES/ ... -- 14.5. Future outlook -- Acknowledgment -- References -- Chapter 15: Scaling-up of microbial electrochemical systems to convert energy from waste into power and biofuel -- 15.1. Introduction -- 15.2. Scale-up of MET from laboratory level to pilot level -- 15.2.1. Microbial fuel cell -- 15.2.2. Microbial electrolysis cell -- 15.2.3. Microbial electrosynthesis -- 15.2.4. Microbial desalination cell -- 15.3. Stacking of microbial electrochemical systems: A major perspective for scaling-up -- 15.3.1. Some case studies on large-scale implementation of MES. , 15.4. Continuous mode of operation of microbial electrochemical systems during scale-up.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (486 pages)
    ISBN: 9780323984515
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Agriculture. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (580 pages)
    Edition: 1st ed.
    ISBN: 9780323918282
    Series Statement: Developments in Applied Microbiology and Biotechnology Series
    DDC: 579.17
    Language: English
    Note: IFC -- Half title -- Half title -- Copyright -- Contents -- Contributors -- 1 Pathogens control using mangrove endophytic fungi -- 1.1 An introduction of mangrove and endophytic fungi and natural compounds studies -- 1.2 Mangrove endophytic fungi and pathogen control -- 1.3 Bacteria control -- 1.4 Viruses control -- 1.5 Parasites control -- 1.6 Final considerations -- References -- 2 Endophytic fungi-mediated synthesis of gold and silver nanoparticles -- 1.1 Introduction -- 1.2 Gold nanoparticles -- 1.3 Silver nanoparticles -- 1.4 Conclusion and future prospect -- References -- 3 Endophytes: A novel tool for sustainable agriculture -- 3.1 Introduction -- 3.2 Biodiversity of endophytes -- 3.2.1 Fungal endophytes -- 3.2.2 Bacterial endophytes -- 3.2.3 Algal endophytes -- 3.3 Interaction between the endophytes and their host plants -- 3.4 Transmission of endophytes -- 3.4.1 Vertical transmission -- 3.4.2 Horizontal transmission -- 3.4.3 Transmission of fungal endophytes -- 3.4.4 Transmission of bacterial endophytes -- 3.5 Endophytes for environment and agriculture sustainablility -- 3.6 Applications of endophytes -- 3.6.1 Nutrient cycling -- 3.6.2 Plant growth promotion by endophytes -- 3.6.3 Bioremediation/biodegradation -- 3.6.4 The role of endophytic microorganisms in bioremediation -- 3.6.5 Future perspective -- 3.6.6 Phytostimulation -- 3.6.7 Phytoimmobilization -- 3.6.8 Phyto-transformation -- 3.6.9 Phytovolatilization -- 3.6.10 Biofertilization -- 3.6.11 Biocontrol -- 3.7 Impact of endophytes on bioactive compounds of host plant -- 3.8 Extracellular enzymes from endophytes -- 3.9 Conclusion -- References -- 4 The role of bioactive metabolites synthesized by endophytes against MDR human pathogens -- 4.1 Introduction -- 4.2 Mechanism of MDR development -- 4.2.1 Target protein mutation -- 4.2.2 MDR produced by biofilm formation. , 4.2.3 Enzyme-based inactivation of drugs -- 4.2.4 Efflux pumping mechanism -- 4.2.5 Alteration of porin structures -- 4.3 Types of endophytes and their associations -- 4.3.1 Endophytic fungi -- 4.3.2 Endophytic bacteria -- 4.3.3 Actinomycetes -- 4.3.4 Mycoplasma -- 4.4 Types of bioactive compounds -- 4.4.1 Secondary metabolites -- 4.4.2 Defense enzymes and phytohormones -- 4.4.3 Antimicrobial agents -- 4.4.4 Anticancer compounds -- 4.4.5 Antibiotics -- 4.5 Mechanism of screening and isolation -- 4.5.1 Extraction -- 4.5.2 Identification followed by characterization -- 4.6 Mode of action of the bioactive compounds -- 4.6.1 Disruption of cell wall biosynthesis and cell lysis -- 4.6.2 Blocking of biofilm synthesis -- 4.6.3 Cell wall biosynthesis inhibition -- 4.6.4 Prokaryotic DNA replication blockage -- 4.6.5 Energy synthesis inhibition -- 4.6.6 Bacterial toxin inhibition -- 4.6.7 Inhibition of bacterial resistance against antibiotics -- 4.6.8 ROS generation -- 4.7 Conclusion -- References -- 5 Endophyte-induced bioremediation of toxic metals/metalloids -- 5.1 Introduction -- 5.2 Endophytes -- 5.2.1 Role of endophytes to improve phytoremediation -- 5.2.2 Endophyte-assisted phytoremediation of toxic metals and metalloids -- 5.2.3 Endophytic bacteria role in remediation of toxic metals and metalloids -- 5.2.4 Endophytic fungi role in remediation of toxic metal and metalloids -- 5.3 Endophyte-assisted phytoremediation in mixed pollutant scenarios -- 5.4 Plant growth promoting endophytic bacteria-assisted phytoremediation -- 5.4.1 Mechanism of plant growth promotion -- 5.4.2 Mechanism of altering plant metal uptake -- Conclusion and future perspectives -- References -- 6 Biological control of plant diseases by endophytes -- 6.1 Introduction -- 6.1.1 Recent approaches used to control plant diseases in agriculture. , 6.1.2 Biocontrol as an environmentally sound approach for plant disease control -- 6.2 Endophytes -- 6.2.1 Biocontrol mechanism of endophytes-mediated disease control -- 6.2.2 Current position of endophytes as biocontrol agents -- Conclusion -- Acknowledgments -- Conflict of interest statement -- References -- 7 Endophytes and their bioactive metabolite's role against various MDR microbes causing diseases in humans -- 7.1 Introduction -- 7.2 Endophytes: what are they? -- 7.3 Types of endophytes -- 7.4 Isolation and identification of endophytes from different sources -- 7.4.1 How to isolate endophytes? -- 7.5 Mode of entry of endophytic bacteria in the plant -- 7.6 Endophytes and their bioactive compounds -- 7.6.1 Synthesis of bioactive compounds by endophytic microbes -- 7.6.2 Secondary metabolites -- 7.6.3 Synthesis of secondary metabolites -- 7.7 Endophytic bacteria-mediated secondary metabolite formation -- 7.8 Microbial endophytes: drug source against various diseases -- 7.9 Endophytes and their biosynthetic potential -- 7.10 Future prospective -- 7.11 Conclusion -- References -- 8 Endophytic bacteria for drug discovery and bioremediation of heavy metals -- 8.1 Introduction -- 8.2 Mode of entry and establishment of symbiotic relationship with plant-endophytic bacteria -- 8.3 Bioactive compounds isolated from endophytes -- 8.3.1 Secondary metabolites -- 8.3.2 Anticancer compounds -- 8.3.3 Antimicrobial compounds -- 8.3.4 Antibiotics from endophytes -- 8.3.5 Antioxidant compounds from endophytes -- 8.3.6 Products of endophytes with insecticidal activities -- 8.4 Bioremediation of heavy metals by endophytic bacteria -- 8.5 The role of endophytic microorganisms in bioremediation -- 8.6 Characteristics of pollutant-degrading endophytic bacteria -- 8.7 Plant-endophytic bacteria mutualism for the remediation of contaminated soil. , 8.8 Plant-endophyte mutualism for the remediation of contaminated water -- 8.9 Future prospective and conclusion -- References -- 9 Mechanism of biological control of plant diseases by endophytes -- 9.1 Introduction -- 9.2 Endophytes -- 9.3 Biocontrol-endophytes -- 9.3.1 Bacterial biocontrol-endophytes -- 9.3.2 Fungal endophytes -- 9.4 Mechanisms of biocontrol-endophytes to controlling phytopathogens -- 9.4.1 Siderophore production -- 9.4.2 Lytic enzyme production -- 9.4.3 ACC deaminase production -- 9.4.4 Bioactive metabolites production -- 9.4.5 Induced systematic resistance -- 9.4.6 Molecular approaches to control phytopathogens -- 9.5 Advantages of biocontrol-endophytes -- 9.6 Challenges -- 9.7 Future prospects -- 9.9 Conclusion -- References -- 10 The role of endophytes to boost the plant immunity -- 10.1 Introduction -- 10.2 Origin of symbiosis -- 10.3 Bacterial endophytes -- 10.4 Fungal endophytes -- 10.5 The molecular mechanism behind the host endophytic association -- 10.6 Pathogen-symbiont trade-off -- 10.7 Modulation of plant immune system by endophytes -- 10.8 Endophytes and host's genetic expression -- 10.9 Role of endophytes in plant defense -- 10.10 Concluding remark -- References -- 11 Endophytes based nanoparticles: A novel source of biological activities -- 11.1 Introduction -- 11.1.1 Endophytic microbes (bacteria or fungi) -- 11.1.2 Significance of endophytic fungi -- 11.1.3 Endophytes and nanoparticles -- 11.2 Nanotechnology -- 11.3 Methodology for nanoparticles synthesis through endophytes -- 11.4 Applications of endophyte-mediated NPs -- 11.4.1 Antimicrobial mechanisms of nanometal toxicity -- 11.4.2 Pharmacological applications -- 11.4.3 Antiviral agents -- 11.4.4 Wound healing activity -- Conclusions and future prospects -- References -- 12 Nanoparticles: Characters, applications, and synthesis by endophytes. , 12.1 Introduction to bionanotechnology -- 12.2 Historical perspectives -- 12.3 Synthesis of nanoparticles -- 12.3.1 Chemical and physical methods of nanoparticles synthesis -- 12.3.2 Biological synthesis of nanoparticles -- 12.4 Introduction to endophytes -- 12.4.1 Types of endophytes -- 12.5 Applications of endophytes -- 12.5.1 Therapeutics -- 12.5.2 Plant growth enhancement -- 12.5.3 Bioremediation -- 12.5.4 Phytoremediation -- 12.5.5 Novel products -- 12.6 Methods for the isolation of endophytic micro-organism -- 12.7 Nanoparticles synthesis by endophytic micro-organisms -- 12.7.1 Nanoparticles synthesized by endophytic bacteria -- 12.7.2 Nanoparticles synthesized by endophytic actinomycetes -- 12.7.3 Nanoparticles synthesized by endophytic fungi -- 12.8 Mechanistic insights involved in the microbial synthesis of nanoparticles -- 12.9 Properties of nanoparticles -- 12.9.1 Electronic and optical properties -- 12.9.2 Magnetic properties -- 12.9.3 Mechanical properties -- 12.9.4 Thermal properties -- 12.10 Characterization methods for nanoparticle analysis -- 12.10.1 UV-Vis spectroscopy -- 12.10.2 Dynamic light scattering -- 12.10.3 Atomic force microscopy -- 12.10.4 Transmission electron microscopy -- 12.10.5 Scanning electron microscopy -- 12.10.6 X-ray-based techniques -- 12.10.7 Fourier transform infrared spectroscopy -- 12.11 Applications of nanoparticles -- 12.11.1 Diagnostics -- 12.11.2 Cancer therapy -- 12.11.3 Antimicrobial activity -- 12.11.4 Catalytic activity -- 12.11.5 Antioxidant activity -- 12.11.6 Environmental remediation -- 12.11.7 Agricultural application -- 12.11.8 Drug delivery system -- References -- 13 Endophytes and their secondary metabolites against human pathogenic MDR microbes -- 13.1 Introduction -- 13.2 Untapped bioactive potential of endophytic bacteria -- 13.2.1 Ecomycins -- 13.2.2 Pseudomycins -- 13.2.3 Munumbicins. , 13.2.4 Kakudumycins.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cambridge :Royal Society of Chemistry,
    Keywords: Electronic books.
    Description / Table of Contents: Biological Treatment of Industrial Wastewater presents a comprehensive overview of the latest advances and trends in the use of bioreactors for treating industrial wastewater.
    Type of Medium: Online Resource
    Pages: 1 online resource (456 pages)
    Edition: 1st ed.
    ISBN: 9781839165405
    Series Statement: ISSN
    Language: English
    Note: Intro -- HalfTitle -- Series Title -- Title -- Copyright -- Contents -- Chapter 1 Industrial Wastewater and Its Toxic Effects 1 -- 1.1 Introduction -- 1.2 Types of Wastewater -- 1.2.1 Stormwater Runoff Wastewater -- 1.2.2 Domestic Wastewater -- 1.2.3 Agricultural Wastewater -- 1.2.4 Industrial Wastewater -- 1.3 Major Pollutants of Industrial Wastewater -- 1.4 Toxic Effects of Industrial Wastewater -- 1.5 Treatment of Industrial Wastewater -- 1.5.1 Treatment of Wastewater Containing Heavy Metals -- 1.5.2 Treatment of Wastewater Containing Phenolic Compounds -- 1.5.3 Treatment of Wastewater Released from the Paper and Pulp Industry -- 1.5.4 Treatment of Wastewater Released from the Textile Industry -- 1.5.5 Treatment of Hypersaline Effluents -- 1.6 Conclusion -- References -- Chapter 2 Impact of Industrial Wastewater Discharge on the Environment and Human Health 15 -- 2.1 Introduction -- 2.2 General Environmental Pollutants -- 2.2.1 Chemical Pollutants -- 2.2.2 Microbial Pollutants -- 2.3 Ecological Implications and Health Impacts of Industrial Wastewater Discharge on the Environment: Water, Soil and Air -- 2.3.1 Ecotoxicological and Health Effects of PPCP on the Environment -- 2.3.2 Ecotoxicological and Health Effects of Heavy Metals on the Environment -- 2.3.3 Ecotoxicological and Health Effects of Nanoparticles on the Environment -- 2.3.4 Ecotoxicological and Health Effects of Microplastics on the Environment -- 2.4 Ecotoxicological and Health Effects of Bacteria in General, antibiotic‐resistant Bacteria, Parasites and Viruses on the Environment -- 2.5 Challenges and Future Perspectives -- References -- Chapter 3 Detrimental Effects of Industrial Wastewater on the Environment and Health 40 -- 3.1 Introduction -- 3.2 Toxic Effect of Heavy Metals -- 3.3 Toxic Effect of Antibiotics -- 3.4 Toxic Effect of Pesticides. , 3.5 Toxic Effect of Microplastics -- 3.6 Conclusion -- References -- Chapter 4 Treatment and Management Strategies for Industrial Wastewater 53 -- 4.1 Introduction -- 4.2 Wastewater From Industries, Its Characterization and Impacts -- 4.2.1 Pulp and Paper Industry -- 4.2.2 Textile Industry -- 4.2.3 Petrochemical Industries -- 4.2.4 Iron and Steel Industries -- 4.3 Laws and Regulations for Industrial Wastewater Treatment -- 4.4 Conventional Methods for Industrial Wastewater Treatment -- 4.4.1 Coagulation or Flocculation -- 4.4.2 Ion Exchange -- 4.4.3 Membrane Filtration -- 4.4.4 Advanced Oxidation Processes -- 4.5 Biological Methods for Industrial Wastewater Treatment -- 4.5.1 Aerobic Process -- 4.5.2 Anaerobic Process -- 4.6 Management Strategies for Industrial Wastewater Treatment -- 4.7 Conclusion -- References -- Chapter 5 Introduction to Industrial Wastewater and Allied Treatment Technologies 74 -- 5.1 Introduction -- 5.2 Sources of Industrial Wastewater -- 5.3 Treatment of Industrial Wastewater -- 5.3.1 Conventional Methods -- 5.3.2 Advanced Bioprocesses -- 5.4 Challenges in Watewater Treatments -- References -- Chapter 6 Bioreactors: A Biological and Bioengineering Prodigy 87 -- 6.1 Introduction -- 6.2 Understanding Bioreactors -- 6.3 Various Features and Types of Bioreactor -- 6.4 Modelling of a Bioreactor -- 6.4.1 Basic Modelling -- 6.4.2 Validation -- 6.4.3 Hybrid Models -- 6.4.4 Balance Regions -- 6.4.5 Bioreactor Fluid Dynamics -- 6.4.6 Bioreactor Operation -- 6.5 Scale-down and -up of a Bioreactor -- 6.5.1 Scale-down Phases 1, 2 and 3 -- 6.5.2 Scale-up -- 6.6 Recent Trends in the Application of Various Types of Bioreactor -- 6.7 Limitations and Future Prospects -- 6.8 Conclusion -- References -- Chapter 7 Challenges in Industrial Wastewater Treatment Using Biological Reactors 105 -- 7.1 Introduction. , 7.2 Industrial Wastewater Composition and Treatability -- 7.3 Biological Processes for Industrial Wastewater Treatment -- 7.3.1 Aerobic Biodegradation -- 7.3.2 Anaerobic Biodegradation -- 7.4 Advanced Biological Wastewater Treatment Technology -- 7.4.1 Membrane Bioreactors (MBRs) -- 7.4.2 Moving-bed Biofilm Reactor (MBBR) -- 7.4.3 Granular Sludge Technology (GST) -- 7.5 Challenges in Industrial Wastewater Treatment Using Biological Processes -- 7.5.1 Agrochemical Wastewater -- 7.5.2 Coal Gasification Wastewater -- 7.5.3 Dairy Wastewater -- 7.5.4 Electroplating Wastewater -- 7.5.5 Mustard Tuber Wastewater -- 7.5.6 Palm Oil Mill Wastewater -- 7.5.7 Pharmaceutical Wastewater -- 7.6 Summary -- References -- Chapter 8 Challenges in Designing and Operation of a Bioreactor for Treatment of Wastewater 131 -- 8.1 Introduction -- 8.2 Basics of a Bioreactor -- 8.2.1 Mode of Operation -- 8.2.2 Types of Bioreactor -- 8.3 Role of Bioreactors in Wastewater Treatment -- 8.3.1 Comparison of Conventional an Activated Sludge Processes and an MBR -- 8.4 Conceptual Design and Approaches for Bioreactor Design -- 8.4.1 Energy Recovery in MBRs -- 8.4.2 Treated Wastewaters from Membrane Bioreactors -- 8.4.3 Operating Conditions and Performance of Membrane Bioreactors -- 8.4.4 Membrane Materials and Modules Used in Membrane Bioreactors -- 8.4.5 Fluxes and Membrane Area of Membrane Bioreactors -- 8.4.6 Membrane Design -- 8.4.7 Design of an Aeration System -- 8.4.8 Cost Benefit Analysis -- 8.5 Challenges Associated with Design and Operation -- 8.5.1 Membrane Fouling -- 8.6 Fouling Control Strategies -- 8.6.1 Pretreatment of Feed Wastewater -- 8.6.2 Physical Cleaning and Backwashing -- 8.6.3 Cleaning -- 8.6.4 Membrane Surface Modification -- 8.6.5 Optimization and Enhancement of Aeration -- 8.6.6 Biological Control Techniques -- 8.7 Reuse and Recovery of Wastewater Using an MBR. , 8.8 Conclusion -- References -- Chapter 9 Different Types of Advanced Bioreactors for the Treatment of Industrial Effluents 157 -- 9.1 Introduction -- 9.1.1 Conventional Biological Treatments and Their Limitations -- 9.1.2 Advanced Bioprocesses and Available Reactor Designs -- 9.1.3 Aim and Objectives of the Chapter -- 9.2 Sequencing Batch Reactor for Effluent Treatment -- 9.3 Aerobic and Anaerobic Stirred-tank Bioreactors -- 9.4 Fixed- and Fluidized- Bed Bioreactor Designs -- 9.5 Membrane-based Technology and Other Possible Integration Approaches -- 9.6 Conclusions and Future Perspectives -- References -- Chapter 10 Membrane Bioreactors: An Advanced Technology to Treat Industrial Waste Water 174 -- 10.1 Introduction -- 10.2 Conventional Techniques for the Treatment of Industrial Waste Water -- 10.3 Advance Technologies for the Treatment of Industrial Waste Water -- 10.3.1 Advanced Oxidation Process (AOP) -- 10.3.2 UV Irradiation -- 10.3.3 Automatic Variable Filtration -- 10.3.4 Electrochemical Processes -- 10.3.5 Adsorption -- 10.3.6 Membrane Filtration -- 10.4 Membrane Bioreactor -- 10.4.1 Working Principles of MBRs -- 10.4.2 Choice of Membranes and Membrane Elements for MBRs -- 10.4.3 Types of MBR -- 10.4.4 Membrane Fouling and Its Control in an MBR -- 10.4.5 MBR vs CAS -- 10.4.6 Application of MBRs -- 10.5 Conclusion and Future Prospects -- References -- Chapter 11 Membrane Bioreactors for Industrial Wastewater Treatment 215 -- 11.1 Introduction -- 11.2 Basics of a Membrane Bioreactor -- 11.3 Limitations and Trouble-shooting of MBR Operation -- 11.4 Commercial MBR Plants and MBR Application in Industrial Sectors -- 11.5 Industrial Application of Membrane Bioreactors -- 11.5.1 Application of the Membrane Bioreactor in Food and Beverage Industries -- 11.5.2 Application of the Membrane Bioreactors in Pharmaceutical Industries. , 11.5.3 Application of the Membrane Bioreactor in Petrochemical Industries -- 11.5.4 Application of the Membrane Bioreactor in Textile Industries -- 11.5.5 Application of the Membrane Bioreactor in Paper-pulp and Tannery Industry -- 11.6 Future Prospects for Membrane Bioreactor Technology -- References -- Chapter 12 Investigation and Treatment of Industrial Wastewater by Membrane Bioreactors: An Innovative Approach 241 -- 12.1 Introduction -- 12.2 Process Description and Configuration of MBR -- 12.3 Effect of MBR on Microorganism and Pollutants and Reuse Options -- 12.4 The Quality of the Effluent Water after MBR Treatment -- 12.5 The Cost Associated with MBRs -- 12.6 Limitations and Advantages of Membrane Bioreactors -- 12.7 Advancement in MBR Technology -- 12.8 Conclusion -- References -- Chapter 13 Membrane Bioreactors for Separation of Persistent Organic Pollutants From Industrial Effluents 257 -- 13.1 Introduction -- 13.2 Sources and Toxicity of POPs -- 13.2.1 Occurrence of Micro-pollutants in Groundwater and Drinking Water -- 13.2.2 Impact of Micro-pollutants on the Environment -- 13.2.3 Toxicity Induced by Micro-pollutants -- 13.3 MBRs for Efficient Treatment of POPs -- 13.4 Major Processes of Pollutant Removal Occurring in MBRs -- 13.4.1 Sorption -- 13.4.2 Biodegradation -- 13.4.3 Stripping/Volatilization -- 13.5 Factors Affecting MBR Efficiency -- 13.5.1 Physicochemical Properties of POPs -- 13.5.2 Operating Conditions -- 13.6 Integrated MBR-based Processes -- 13.6.1 AOPs-MBR -- 13.6.2 Reverse Osmosis and Forward Osmosis Membrane Systems -- 13.6.3 Granular MBR -- 13.6.4 Membrane Distillation Bioreactor (MDBR) -- 13.6.5 Biofilm/Bio-entrapped Membrane Bioreactor -- 13.7 Membrane-based Separation of Treated Water from Mixed Liquor -- 13.7.1 Ultrafiltration Membranes -- 13.7.2 Nanofiltration Membranes. , 13.8 Different Tools for Process Optimization.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Sewage-Purification-Technological innovations. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (724 pages)
    Edition: 1st ed.
    ISBN: 9780323900119
    Language: English
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - Nanoadsorbents for scavenging emerging contaminants from wastewater -- 1.1 Introduction -- 1.2 Emerging contaminants -- 1.3 Occurrence of emerging contaminants in aquatic systems -- 1.4 Exposure pathways of emerging contaminants in the environment -- 1.5 Treatment technologies for removal of ECs -- 1.6 Conventional treatment methods -- 1.7 Emerging methods -- 1.7.1 Biological treatment method -- 1.7.2 Advanced oxidation process -- 1.8 Nanoadsorbents -- 1.9 Classification of nanoadsorbents -- 1.10 Methods for preparation of nanoadsorbents -- 1.11 Properties of nanoadsorbents -- 1.12 Mechanisms of nanoadsorption -- 1.13 The π-π interaction -- 1.14 Electrostatic interaction -- 1.15 Hydrophobic interaction -- 1.16 Hydrogen bonding -- 1.17 Factors affecting adsorption process -- 1.17.1 pH -- 1.17.2 Ionic strength -- 1.17.3 Dissolved organic matter -- 1.18 Conclusions -- References -- 2 - Treatment aspect of an emerging pollutant from Pharmaceutical industries using advanced oxidation process: past, curre ... -- 2.1 Introduction -- 2.2 Treatment technologies -- 2.2.1 Recovery process -- 2.2.2 Phase changing technologies -- 2.2.2.1 Adsorption -- 2.2.2.2 Membrane technology -- 2.2.3 Biological process -- 2.3 Advanced oxidation process -- 2.3.1 Nonphotochemical methods -- 2.3.1.1 Ozonation -- 2.3.1.2 Ozone and hydrogen peroxide (Peroxone) -- 2.3.2 Catalytic ozonation -- 2.3.3 Fenton system -- 2.3.3.1 Sulfate-based AOPs -- 2.3.4 Photochemical methods -- 2.3.4.1 O 3  + UV Method -- 2.3.4.2 H 2 O 2 +UV light Method -- 2.3.4.3 H 2 O 2 +UV+ O 3 Method -- 2.3.4.4 Photolysis -- 2.3.4.5 UV/persulfate -- 2.3.4.6 Photo-Fenton Method -- 2.3.4.7 Photocatalysis -- 2.3.4.8 Other AOPs -- 2.4 Future prospects -- References. , 3 - Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics -- 3.1 Introduction -- 3.2 Microplastic generation and pollution -- 3.3 Effect of Synthetic microplastic pollution -- 3.4 Technical implementation of membrane bioreactor (MBR) for elimination micro plastic pollutants -- References -- 4 - Strategies to cope with the emerging waste water contaminants through adsorption regimes -- 4.1 Introduction -- 4.2 Uptake of pollutants from water via adsorption -- 4.3 Adsorbents and there use in purification of waters -- 4.4 Various emerging pollutants and their effects -- 4.4.1 Heavy metals -- 4.4.2 Dyes -- 4.4.3 Pharmaceuticals -- 4.4.4 Fluoride -- 4.4.5 Arsenic -- 4.4.6 Other emerging pollutants -- 4.5 Adsorption strategies for removal of emerging pollutants from waste waters -- 4.6 Adsorption of pollutants using hydrothermal carbonization: an environment safe procedure using carbon adsorbents -- 4.7 Use of hydrothermal carbonization (HTC) in adsorption -- 4.7.1 Dye adsorption -- 4.7.2 Pesticide(s) adsorption -- 4.7.3 Antibiotics/drugs adsorption -- 4.7.4 Endocrine disrupting chemicals (EDC) -- 4.8 Metals and metal ions adsorption by HTCs -- 4.9 Adsorption of metal(s) from mixture of metals -- 4.10 Adsorption of heavy metals using HTCs -- 4.11 Use of cost-effective adsorbent for adsorption of heavy metals -- 4.12 Uptake of metals using low-cost adsorbent materials -- 4.13 Use of agricultural residues as adsorbents -- 4.14 Uses of industrial wastes as adsorbents -- 4.14.1 Marine materials -- 4.14.2 Clay and zeolite -- 4.15 Adsorption/biosorption of antibiotics from waste water -- 4.16 Elimination of heavy metals via adsorption/biosorption -- 4.17 Heavy metals uptake using activated sludge and sludge-derived materials. , 4.18 Uptake of endocrine disrupting chemicals (EDC) -- 4.19 Future prospects -- 4.20 Conclusion -- References -- 5 - Performances of membrane bioreactor technology for treating domestic wastewater operated at different sludge retention ... -- 5.1 Introduction -- 5.1.1 Fundamentals of membrane bioreactors -- 5.1.2 Development of MBR studies -- 5.1.3 Membrane fouling in MBR systems -- 5.1.4 Performances of MBRs at high biomass retention -- 5.1.5 Task and purpose of the study -- 5.2 Materials and methods -- 5.2.1 Experimental setup -- 5.2.2 Sludge retention time -- 5.2.3 Analysis methods -- 5.3 Results and discussion -- 5.3.1 Effect of SRTs on sludge concentration in the system -- 5.3.2 Effects of SRT on sludge bioactivity -- 5.3.3 Effect of SRT on SVI and viscosity -- 5.3.4 Effects of SRT on COD removal in the system -- 5.4 Influence of SRT on sludge particle size distribution -- 5.5 Conclusions -- Acknowledgements -- Abbreviations -- References -- 6 - Advances in nanotechnologies of waste water treatment: strategies and emerging opportunities -- 6.1 Introduction -- 6.2 Metallic nanoparticles -- 6.3 Nanoadsorbents -- 6.4 Nanobiosorbents -- 6.5 Nanomembranes -- 6.6 Nanocatalysts -- 6.6.1 Photocatalyst based advance oxidation process -- 6.7 Conclusions -- Acknowledgements -- References -- 7 - Water and Wastewater Treatment through Ozone-based technologies -- 7.1 Introduction -- 7.2 Global water scenario -- 7.3 Strategies for solving the water shortage issues -- 7.4 Why ozone-based technologies used for water and wastewater treatment? -- 7.4.1 Advanced Oxidation Process (AOP) -- 7.4.2 Benefits of ozone (O 3 ) based treatment -- 7.5 Worldwide status, history, and background of O 3 based technology for drinking water and wastewater treatment -- 7.6 Use of ozone-based technology for disinfection. , 7.6.1 Mechanisms of Inactivation by Ozone -- 7.7 Treatment of municipal and industrial wastewater through Ozone-based technology -- 7.8 Removal of physical pollutants (odor and taste) through Ozone-based technologies -- 7.9 Removal of various chemical pollutants (COD, BOD and coloring agents) from wastewater through Ozone-based technologies -- 7.10 Factors affecting the Ozonation process -- 7.11 Conclusion and Future prospects -- References -- 8 - Constructed wetland: a promising technology for the treatment of hazardous textile dyes and effluent -- 8.1 Introduction -- 8.2 Classification of dyes -- 8.3 Impact of dye toxicity on environment -- 8.4 Impact of dye toxicity on living beings -- 8.5 Dye remediation strategies -- 8.5.1 Physical methods -- 8.5.2 Chemical methods -- 8.5.3 Biological methods -- 8.6 Constructed wetlands: a step towards technology transfer -- 8.7 Classification of constructed wetlands -- 8.8 Recent developments in textile wastewater treatments using constructed wetlands -- 8.9 Conclusion and future prospective -- References -- 9 - Biogenic nanomaterials: Synthesis, characteristics, and recent trends in combating hazardous pollutants (An arising sc ... -- 9.1 Introduction -- 9.2 History of nanotechnology and conventional synthetic routes of nanomaterials -- 9.3 Nanobiotechnology: An arising scientific horizon -- 9.3.1 Biologically fabricated NPs for the removal of hazardous water pollutants -- 9.3.1.1 Biologically fabricated NPs using bacteria and actinomycetes -- 9.3.1.2 Biologically fabricated NPs using fungi -- 9.3.1.3 Biologically fabricated NPs using yeast -- 9.3.1.4 Biologically fabricated NPs using algae -- 9.3.1.5 Biologically fabricated NPs using plant extracts -- 9.3.1.6 Biologically fabricated NPs using agro-industrial waste extracts. , 9.3.2 Possible mechanisms involved in biomimetic synthesis of NPs -- 9.3.2.1 Role of enzymes and proteins -- 9.3.2.2 Role of exopolysaccharides -- 9.4 Advantages, limitations, drawbacks, and future perspectives of nanobiotechnology -- 9.5 Conclusions -- References -- 10 - Removal of emerging contaminants from pharmaceutical wastewater through application of bionanotechnology -- 10.1 Introduction -- 10.2 Overview of contaminants in pharmaceutical wastewater -- 10.3 Applications of nanomaterials for the removal of pharmaceutical contaminants -- 10.3.1 Nanofiltration -- 10.3.2 Advanced oxidation process -- 10.3.3 Nanosorbents (nanotubes and zeolites) -- 10.4 Concluding remarks -- References -- 11 - Recent advances in pesticides removal using agroindustry based biochar -- 11.1 Introduction -- 11.2 What is biochar? -- 11.3 Characteristics of biochar -- 11.3.1 Porosity and surface area -- 11.3.2 pH -- 11.3.3 Functional groups at the surface -- 11.3.4 Carbon content and aromatic structures -- 11.3.5 Mineral composition -- 11.4 Modified biochar -- 11.5 Hazards of pesticides to environment and health -- 11.6 Recent development in pesticides sorption on biochar -- 11.6.1 Herbicides sorption -- 11.6.2 Insecticides sorption -- 11.6.3 Fungicides sorption -- 11.6.4 Nematicides sorption -- 11.7 Conclusion and future perspective -- References -- 12 - Bioremediation - the natural solution -- 12.1 Introduction -- 12.2 Characteristics of municipal wastewater -- 12.2.1 Organic impurities -- 12.2.2 Solids -- 12.2.3 Nutrients -- 12.2.3.1 Phosphorus -- 12.2.3.2 Nitrogen -- 12.2.3.3 Nitrogen present in municipal wastewater treatment plants (WWTPS) -- 12.2.4 Effects of phosphorus and nitrogen on environment -- 12.2.5 Pathogens -- 12.3 Wastewater treatment -- 12.3.1 Physical treatment -- 12.3.2 Chemical treatment. , 12.3.3 Thermal treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Microbiology-Cultures and culture media. ; Sewage-Purification. ; Electronic books.
    Description / Table of Contents: Focussing on microbial community structure in the field of wastewater treatment, it highlights structure analyses in relation to changes in physico-chemical parameters. It further covers physiological analyses of microbial communities, enrichment of pure cultures, and analyses and modelling of consequences of changes in community structures.
    Type of Medium: Online Resource
    Pages: 1 online resource (253 pages)
    Edition: 1st ed.
    ISBN: 9781000815122
    DDC: 628.3
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Electronic books.
    Description / Table of Contents: Ideal for postgraduates and researchers in a variety of disciplines, this book covers the ecology, genomics, physiology and biochemistry of AOBs and their presence in wastewater and the challenges, opportunities and potential applications for nitrification and ammonia removal.
    Type of Medium: Online Resource
    Pages: 1 online resource (241 pages)
    Edition: 1st ed.
    ISBN: 9781837671960
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Pollution. ; Environmental chemistry. ; Environmental engineering. ; Biotechnology. ; Environmental health.
    Description / Table of Contents: Chapter 1. Bioremediation Approaches for Pulp and Paper Industry Wastewater Treatment: Recent Advances and Challenges -- Chapter 2. Microbial remediation of Heavy Metals -- Chapter 3. Dyes: effect on environment and biosphere and their remediation constrains -- Chapter 4. Microbial Bioremediation and Biodegradation of Hydrocarbons, Heavy Metals and Radioactive Wastes in solid and waste waters -- Chapter 5. Advancement of omics: Prospects for bioremediation of contaminated soils -- Chapter 6. Microbial biotransformation of hexavalent chromium Cr(VI) in tannery wastewater -- Chapter 7. Bio-remediation: A Low-Cost and Clean-Green Technology for Environmental Management -- Chapter 8. Microbial Degradation of Pharmaceuticals and Personal-care Products from Wastewater -- Chapter 9. Extremophiles; A powerful choice for bioremediation of toxic oxyanions -- Chapter 10. Conventional and non-conventional biodegradation technologies for agroindustrial liquid wastes management -- Chapter 11. White Rot Fungi: Nature’s Scavenger -- Chapter 12. Nanobioremediation: An emerging approach for a cleaner environment -- Chapter 13. Bioelectrochemical system for bioremediation and energy generation -- Chapter 14. Ligninolysis: Roles of Microbes and their Extracellular Enzymes -- Chapter 15. Biosorption of heavy metals by Cyanobacteria: potential of live and dead cells in bioremediation -- Chapter 16. Bioremediation of pharmaceuticals in water and wastewater -- Chapter 17. Bioremediation Of Saline Soil by Cynobacteria -- Chapter 18. Advancement in treatment technologies of Biopharmaceutical Industrial effluents -- Chapter 19. Marine Bacteria- A Storehouse of novel compounds for biodegradation -- Chapter 20. Energy-efficient anaerobic ammonia removal: from laboratory to full-scale application -- Chapter 21. Microbial degradation of natural and synthetic rubbers.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(IX, 550 p. 69 illus., 48 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9789811518126
    Series Statement: Springer eBook Collection
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...