GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Scaling (Social sciences). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (514 pages)
    Edition: 1st ed.
    ISBN: 9780323907668
    Series Statement: Advances in Green and Sustainable Chemistry Series
    DDC: 541.37
    Language: English
    Note: Intro -- Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial electrochemical systems -- 1.1. Introduction -- 1.2. Classification of METs -- 1.2.1. Microbial fuel cells (MFCs) -- 1.2.2. Microbial electrolysis cells (MECs) -- 1.2.3. Microbial solar cells (MSCs) -- 1.2.4. Microbial electrosynthesis cells (MESCs) -- 1.2.5. Microbial desalination cells (MDCs) -- 1.3. Conclusion -- Acknowledgments -- References -- Chapter 2: A review on scaling-up of microbial fuel cell: Challenges and opportunities -- 2.1. Introduction -- 2.2. MFC theory -- 2.3. Research gap of MFC -- 2.4. Operational and electrochemical limitations of MFC analysis -- 2.4.1. MFC start-up process -- 2.4.2. Wastewater -- 2.4.3. Electrode materials -- 2.4.4. Anode material -- 2.4.5. Cathode material -- 2.4.6. Design of MFC -- 2.4.7. Electrical network of MFC -- 2.5. Technology development solution -- 2.6. Techno-economic viability -- 2.6.1. Advantages of MFC -- 2.7. Pilot scale to industrial scale of MFC -- 2.8. Application of microbial fuel cell to the social relevance -- 2.8.1. Electricity generation -- 2.8.2. Bio-hydrogen production -- 2.8.3. Wastewater treatment -- 2.8.4. Biosensor -- 2.8.5. Desalination plants -- 2.9. Recent developments -- 2.10. Future improvements -- 2.11. Conclusion -- References -- Chapter 3: Electroactive biofilm and electron transfer in microbial electrochemical systems -- 3.1. Introduction -- 3.2. Electroactive microorganisms (EAMs) -- 3.3. Formation of electroactive biofilms (EABFs) -- 3.3.1. Anodic EABFs -- 3.3.2. Cathodic EABFs -- 3.4. Electron transfer mechanism -- 3.4.1. Anodic electron transfer -- 3.4.2. Cathodic electron transfer -- 3.5. Effect of design, operational, and biological parameters on electroactivity of EABFs -- 3.5.1. Design parameters. , 3.5.1.1. Effect of electrode materials and their characteristics -- 3.5.1.2. Influence of applied voltage or potential -- 3.5.2. Operational parameters -- 3.5.2.1. Effect of substrate on EABFs -- 3.5.2.2. Effect of temperature on EABFs -- 3.5.2.3. Effect of pH on EABFs -- 3.5.3. Biological parameters -- 3.6. Genetic engineering: An approach to enhance exoelectrogenesis -- 3.7. Applications of EABFs -- 3.8. Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4: Role of electroactive biofilms in governing the performance of microbial electrochemical system -- 4.1. Introduction -- 4.2. Role of electroactive biofilms in MES -- 4.3. Strategies for development of EAB -- 4.3.1. Natural growth of EAB -- 4.3.2. Artificial induction of EAB -- 4.4. Microbes in EAB -- 4.4.1. Anodic EAB -- 4.4.1.1. Pure culture -- 4.4.1.2. Mixed culture -- 4.4.2. Cathodic EAB -- 4.5. Electron transfer in EAB -- 4.5.1. Direct ET -- 4.5.2. Indirect ET -- 4.6. Methods to study EAB -- 4.7. Dynamic of EAB application -- 4.8. Conclusion and future prospects -- References -- Chapter 5: Electroactive biofilm and electron transfer in the microbial electrochemical system -- 5.1. Introduction -- 5.2. Electroactive microorganism and biofilm formation -- 5.3. Factors affecting electroactive biofilm formation -- 5.3.1. System architecture -- 5.3.2. Biological parameters -- 5.3.3. Operating parameters -- 5.3.3.1. Effect of external resistance and redox potential -- 5.3.3.2. Substrate concentration and loading -- 5.3.3.3. Other factors (pH, temperature, oxygen, and shear rate) -- 5.4. Electron transfer mechanism in MES -- 5.4.1. Direct electron transfer from cell to the electrode -- 5.4.2. Mediated electron transfer -- 5.5. Tools and techniques to study electroactive biofilms and microbial community analysis -- 5.6. Conclusion and future prospects -- References. , Chapter 6: Electroactive biofilm and electron transfer in MES -- 6.1. Introduction -- 6.2. Electroactive biofilms (EABs) -- 6.3. Anodic electroactive biofilm -- 6.4. Cathodic electroactive biofilm -- 6.5. Mechanism of electron within anodic EAB -- 6.6. Mechanisms of electron transfer in cathodic EABs -- 6.7. Tools and techniques used to study EABs -- 6.8. Applications of EABs -- 6.9. Conclusion -- References -- Chapter 7: Bioelectroremediation of wastes using bioelectrochemical system -- 7.1. Introduction -- 7.2. Drawbacks of conventional bioremediation -- 7.3. Phytoremediation -- 7.4. BES for ground water remediation -- 7.5. Practical obstacles in GW remediation suggests BES application -- 7.6. In situ bioelectroremediation: Ideal step -- 7.7. Bioelectroremediation: Future perspectives -- 7.8. Conclusion -- References -- Chapter 8: Fiber-reinforced polymer (FRP) as proton exchange membrane (PEM) in single chambered microbial fuel cells (MFCs) -- 8.1. Introduction -- 8.2. Proton exchange membranes (PEM) -- 8.3. Present study -- 8.4. Designing and fabrication of single-chambered MFCs -- 8.5. Natural fiber-reinforced polymer (FRP) composite as PEM in MFCs -- 8.6. Substrates used in MFCs -- 8.7. Inocula used in MFCs -- 8.8. Experimental design -- 8.9. Results in terms of electricity generation -- 8.10. Results in terms of COD removal -- 8.11. Results of the comparison of different proton exchange membrane (PEM) used in MFC with commercially available PEM-b ... -- 8.12. Results in terms of electricity generation -- 8.13. Results in terms of COD removal -- 8.14. Conclusions -- References -- Chapter 9: Effects of biofouling on polymer electrolyte membranes in scaling-up of microbial electrochemical systems -- 9.1. Introduction -- 9.2. Causes of biofouling in polymer electrolyte membrane -- 9.3. Mechanism of polymer electrolyte membrane biofouling. , 9.4. Effects of biofouling on MES performance -- 9.5. Methods to analyze membrane biofouling -- 9.6. Challenges confronted in scaling-up of MES -- 9.7. Preventive measures of membrane biofouling -- 9.7.1. Pretreatment of PEMs -- 9.7.2. Surface coatings on PEM -- 9.7.3. Polymer electrolyte membrane composites -- 9.7.4. Quorum Quenching for membrane antifouling -- 9.8. Conclusion -- References -- Chapter 10: Advancement in electrode materials and membrane separators for scaling up of MES -- 10.1. Introduction -- 10.2. Designing of reactor to scale-up -- 10.3. Electrode modification in scaling-up of MES -- 10.4. Membrane separators in MES -- References -- Chapter 11: Scale-up of bioelectrochemical systems: Stacking strategies and the road ahead -- 11.1. Introduction -- 11.2. Scale-up: Issues and strategies -- 11.3. Stacking of BESs -- 11.4. Voltage reversal and prevention -- 11.5. Pilot-scale BESs for hydrogen/methane production -- 11.6. Scaled-up BESs for bioremediation -- 11.7. Conclusions and future perspective -- References -- Chapter 12: Application of microbial electrochemical system for industrial wastewater treatment -- 12.1. Introduction -- 12.2. Energy recovery in wastewater treatment systems -- 12.3. Industrial wastewater generation and the ecotoxicological impacts of the pollutants -- 12.3.1. Heavy metals -- 12.3.2. Emerging contaminants -- 12.4. Industrial wastewater treatment in microbial electrochemical systems -- 12.4.1. Microbial fuel cell -- 12.4.2. Microbial electrolysis cell -- 12.4.3. Microbial desalination cell -- 12.5. Recent advancements in scaling up microbial electrochemical systems -- 12.5.1. Design of MES used in scale-up applications -- 12.5.2. Influencing parameters related to scale up -- 12.5.3. Application of MES in industrial companies: Current status -- 12.5.4. Current challenges and future perspective. , 12.6. Economic and life cycle assessment -- 12.7. Conclusion -- References -- Chapter 13: Metabolic engineering and synthetic biology key players for improving efficacy of microbial fuel cell technology -- 13.1. Introduction -- 13.2. Classification or types and design of MFC for electricity generation -- 13.3. Molecular mechanisms of electron transfer by diverse microbial regimes or electrogens for MFC technology -- 13.4. Existing physical- and chemical-based approaches for improving the MFC performance -- 13.4.1. Anode and cathode modifications -- 13.5. Existing pitfalls or drawbacks of existing MFC technology -- 13.6. Metabolic engineering and synthetic biology impacts on improving MFC performance -- 13.7. Conclusion and future outlook -- Acknowledgment -- References -- Chapter 14: Microbial electrochemical platform: A sustainable workhorse for improving wastewater treatment and desalination -- 14.1. Introduction -- 14.2. Classification and general discussion about microbial electrochemical platform toward wastewater treatment and desa ... -- 14.3. Potential role of existing native microbial regime in wastewater treatment and desalination -- 14.4. Metabolic engineering and synthetic biology impacts on improving strains or M/Os to improve the performance of MES/ ... -- 14.5. Future outlook -- Acknowledgment -- References -- Chapter 15: Scaling-up of microbial electrochemical systems to convert energy from waste into power and biofuel -- 15.1. Introduction -- 15.2. Scale-up of MET from laboratory level to pilot level -- 15.2.1. Microbial fuel cell -- 15.2.2. Microbial electrolysis cell -- 15.2.3. Microbial electrosynthesis -- 15.2.4. Microbial desalination cell -- 15.3. Stacking of microbial electrochemical systems: A major perspective for scaling-up -- 15.3.1. Some case studies on large-scale implementation of MES. , 15.4. Continuous mode of operation of microbial electrochemical systems during scale-up.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Sewage-Purification-Technological innovations. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (724 pages)
    Edition: 1st ed.
    ISBN: 9780323900119
    Language: English
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- 1 - Nanoadsorbents for scavenging emerging contaminants from wastewater -- 1.1 Introduction -- 1.2 Emerging contaminants -- 1.3 Occurrence of emerging contaminants in aquatic systems -- 1.4 Exposure pathways of emerging contaminants in the environment -- 1.5 Treatment technologies for removal of ECs -- 1.6 Conventional treatment methods -- 1.7 Emerging methods -- 1.7.1 Biological treatment method -- 1.7.2 Advanced oxidation process -- 1.8 Nanoadsorbents -- 1.9 Classification of nanoadsorbents -- 1.10 Methods for preparation of nanoadsorbents -- 1.11 Properties of nanoadsorbents -- 1.12 Mechanisms of nanoadsorption -- 1.13 The π-π interaction -- 1.14 Electrostatic interaction -- 1.15 Hydrophobic interaction -- 1.16 Hydrogen bonding -- 1.17 Factors affecting adsorption process -- 1.17.1 pH -- 1.17.2 Ionic strength -- 1.17.3 Dissolved organic matter -- 1.18 Conclusions -- References -- 2 - Treatment aspect of an emerging pollutant from Pharmaceutical industries using advanced oxidation process: past, curre ... -- 2.1 Introduction -- 2.2 Treatment technologies -- 2.2.1 Recovery process -- 2.2.2 Phase changing technologies -- 2.2.2.1 Adsorption -- 2.2.2.2 Membrane technology -- 2.2.3 Biological process -- 2.3 Advanced oxidation process -- 2.3.1 Nonphotochemical methods -- 2.3.1.1 Ozonation -- 2.3.1.2 Ozone and hydrogen peroxide (Peroxone) -- 2.3.2 Catalytic ozonation -- 2.3.3 Fenton system -- 2.3.3.1 Sulfate-based AOPs -- 2.3.4 Photochemical methods -- 2.3.4.1 O 3  + UV Method -- 2.3.4.2 H 2 O 2 +UV light Method -- 2.3.4.3 H 2 O 2 +UV+ O 3 Method -- 2.3.4.4 Photolysis -- 2.3.4.5 UV/persulfate -- 2.3.4.6 Photo-Fenton Method -- 2.3.4.7 Photocatalysis -- 2.3.4.8 Other AOPs -- 2.4 Future prospects -- References. , 3 - Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics -- 3.1 Introduction -- 3.2 Microplastic generation and pollution -- 3.3 Effect of Synthetic microplastic pollution -- 3.4 Technical implementation of membrane bioreactor (MBR) for elimination micro plastic pollutants -- References -- 4 - Strategies to cope with the emerging waste water contaminants through adsorption regimes -- 4.1 Introduction -- 4.2 Uptake of pollutants from water via adsorption -- 4.3 Adsorbents and there use in purification of waters -- 4.4 Various emerging pollutants and their effects -- 4.4.1 Heavy metals -- 4.4.2 Dyes -- 4.4.3 Pharmaceuticals -- 4.4.4 Fluoride -- 4.4.5 Arsenic -- 4.4.6 Other emerging pollutants -- 4.5 Adsorption strategies for removal of emerging pollutants from waste waters -- 4.6 Adsorption of pollutants using hydrothermal carbonization: an environment safe procedure using carbon adsorbents -- 4.7 Use of hydrothermal carbonization (HTC) in adsorption -- 4.7.1 Dye adsorption -- 4.7.2 Pesticide(s) adsorption -- 4.7.3 Antibiotics/drugs adsorption -- 4.7.4 Endocrine disrupting chemicals (EDC) -- 4.8 Metals and metal ions adsorption by HTCs -- 4.9 Adsorption of metal(s) from mixture of metals -- 4.10 Adsorption of heavy metals using HTCs -- 4.11 Use of cost-effective adsorbent for adsorption of heavy metals -- 4.12 Uptake of metals using low-cost adsorbent materials -- 4.13 Use of agricultural residues as adsorbents -- 4.14 Uses of industrial wastes as adsorbents -- 4.14.1 Marine materials -- 4.14.2 Clay and zeolite -- 4.15 Adsorption/biosorption of antibiotics from waste water -- 4.16 Elimination of heavy metals via adsorption/biosorption -- 4.17 Heavy metals uptake using activated sludge and sludge-derived materials. , 4.18 Uptake of endocrine disrupting chemicals (EDC) -- 4.19 Future prospects -- 4.20 Conclusion -- References -- 5 - Performances of membrane bioreactor technology for treating domestic wastewater operated at different sludge retention ... -- 5.1 Introduction -- 5.1.1 Fundamentals of membrane bioreactors -- 5.1.2 Development of MBR studies -- 5.1.3 Membrane fouling in MBR systems -- 5.1.4 Performances of MBRs at high biomass retention -- 5.1.5 Task and purpose of the study -- 5.2 Materials and methods -- 5.2.1 Experimental setup -- 5.2.2 Sludge retention time -- 5.2.3 Analysis methods -- 5.3 Results and discussion -- 5.3.1 Effect of SRTs on sludge concentration in the system -- 5.3.2 Effects of SRT on sludge bioactivity -- 5.3.3 Effect of SRT on SVI and viscosity -- 5.3.4 Effects of SRT on COD removal in the system -- 5.4 Influence of SRT on sludge particle size distribution -- 5.5 Conclusions -- Acknowledgements -- Abbreviations -- References -- 6 - Advances in nanotechnologies of waste water treatment: strategies and emerging opportunities -- 6.1 Introduction -- 6.2 Metallic nanoparticles -- 6.3 Nanoadsorbents -- 6.4 Nanobiosorbents -- 6.5 Nanomembranes -- 6.6 Nanocatalysts -- 6.6.1 Photocatalyst based advance oxidation process -- 6.7 Conclusions -- Acknowledgements -- References -- 7 - Water and Wastewater Treatment through Ozone-based technologies -- 7.1 Introduction -- 7.2 Global water scenario -- 7.3 Strategies for solving the water shortage issues -- 7.4 Why ozone-based technologies used for water and wastewater treatment? -- 7.4.1 Advanced Oxidation Process (AOP) -- 7.4.2 Benefits of ozone (O 3 ) based treatment -- 7.5 Worldwide status, history, and background of O 3 based technology for drinking water and wastewater treatment -- 7.6 Use of ozone-based technology for disinfection. , 7.6.1 Mechanisms of Inactivation by Ozone -- 7.7 Treatment of municipal and industrial wastewater through Ozone-based technology -- 7.8 Removal of physical pollutants (odor and taste) through Ozone-based technologies -- 7.9 Removal of various chemical pollutants (COD, BOD and coloring agents) from wastewater through Ozone-based technologies -- 7.10 Factors affecting the Ozonation process -- 7.11 Conclusion and Future prospects -- References -- 8 - Constructed wetland: a promising technology for the treatment of hazardous textile dyes and effluent -- 8.1 Introduction -- 8.2 Classification of dyes -- 8.3 Impact of dye toxicity on environment -- 8.4 Impact of dye toxicity on living beings -- 8.5 Dye remediation strategies -- 8.5.1 Physical methods -- 8.5.2 Chemical methods -- 8.5.3 Biological methods -- 8.6 Constructed wetlands: a step towards technology transfer -- 8.7 Classification of constructed wetlands -- 8.8 Recent developments in textile wastewater treatments using constructed wetlands -- 8.9 Conclusion and future prospective -- References -- 9 - Biogenic nanomaterials: Synthesis, characteristics, and recent trends in combating hazardous pollutants (An arising sc ... -- 9.1 Introduction -- 9.2 History of nanotechnology and conventional synthetic routes of nanomaterials -- 9.3 Nanobiotechnology: An arising scientific horizon -- 9.3.1 Biologically fabricated NPs for the removal of hazardous water pollutants -- 9.3.1.1 Biologically fabricated NPs using bacteria and actinomycetes -- 9.3.1.2 Biologically fabricated NPs using fungi -- 9.3.1.3 Biologically fabricated NPs using yeast -- 9.3.1.4 Biologically fabricated NPs using algae -- 9.3.1.5 Biologically fabricated NPs using plant extracts -- 9.3.1.6 Biologically fabricated NPs using agro-industrial waste extracts. , 9.3.2 Possible mechanisms involved in biomimetic synthesis of NPs -- 9.3.2.1 Role of enzymes and proteins -- 9.3.2.2 Role of exopolysaccharides -- 9.4 Advantages, limitations, drawbacks, and future perspectives of nanobiotechnology -- 9.5 Conclusions -- References -- 10 - Removal of emerging contaminants from pharmaceutical wastewater through application of bionanotechnology -- 10.1 Introduction -- 10.2 Overview of contaminants in pharmaceutical wastewater -- 10.3 Applications of nanomaterials for the removal of pharmaceutical contaminants -- 10.3.1 Nanofiltration -- 10.3.2 Advanced oxidation process -- 10.3.3 Nanosorbents (nanotubes and zeolites) -- 10.4 Concluding remarks -- References -- 11 - Recent advances in pesticides removal using agroindustry based biochar -- 11.1 Introduction -- 11.2 What is biochar? -- 11.3 Characteristics of biochar -- 11.3.1 Porosity and surface area -- 11.3.2 pH -- 11.3.3 Functional groups at the surface -- 11.3.4 Carbon content and aromatic structures -- 11.3.5 Mineral composition -- 11.4 Modified biochar -- 11.5 Hazards of pesticides to environment and health -- 11.6 Recent development in pesticides sorption on biochar -- 11.6.1 Herbicides sorption -- 11.6.2 Insecticides sorption -- 11.6.3 Fungicides sorption -- 11.6.4 Nematicides sorption -- 11.7 Conclusion and future perspective -- References -- 12 - Bioremediation - the natural solution -- 12.1 Introduction -- 12.2 Characteristics of municipal wastewater -- 12.2.1 Organic impurities -- 12.2.2 Solids -- 12.2.3 Nutrients -- 12.2.3.1 Phosphorus -- 12.2.3.2 Nitrogen -- 12.2.3.3 Nitrogen present in municipal wastewater treatment plants (WWTPS) -- 12.2.4 Effects of phosphorus and nitrogen on environment -- 12.2.5 Pathogens -- 12.3 Wastewater treatment -- 12.3.1 Physical treatment -- 12.3.2 Chemical treatment. , 12.3.3 Thermal treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Photocatalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (796 pages)
    Edition: 1st ed.
    ISBN: 9780128242025
    DDC: 660/.2995
    Language: English
    Note: Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Novel photocatalytic techniques for organic dye degradation in water -- 1.1 An overview of dye pollution and classification -- 1.2 Existing treatment options -- 1.3 Photocatalysis: basic principle -- 1.4 Novel photocatalytic approaches -- 1.4.1 Titanium dioxide and strategies for improving photoactivity of TiO2 -- 1.4.2 Metal oxides/sulfide/nanocomposites -- 1.4.3 Layered nanocomposites -- 1.5 Mechanisms of photocatalysis: schemes involved in photocatalytic degradation -- 1.6 Type-II heterostructure semiconductors -- 1.6.1 p-n junction semiconductor -- 1.6.2 Z-scheme semiconductor -- 1.7 Factors affecting photocatalysis/photodegradation -- 1.7.1 Effect of pH -- 1.7.2 Effect of irradiation intensity -- 1.7.3 Effect of temperature -- 1.7.4 Effect of photocatalyst loading -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2 Effect of operating parameters on photocatalytic degradation of dyes by using graphitic carbon nitride -- 2.1 Introduction -- 2.1.1 Photocatalysis -- 2.1.2 Photocatalyst -- 2.2 Graphitic carbon nitride (g - C3N4) photocatalyst -- 2.2.1 Synthesis techniques of g - C3N4 -- 2.2.2 Modifications of g - C3N4 -- 2.2.3 Composites of g - C3N4 -- 2.3 Degradation of dyes -- 2.4 Operating parameters in photocatalytic degradation -- 2.4.1 Effect of pH -- 2.4.2 Effect of catalyst concentration -- 2.4.3 Effect of light intensity -- 2.4.4 Effect of irradiation time -- 2.4.5 Effect of oxidizing agents -- 2.5 Conclusion -- References -- Chapter 3 Photocatalytic degradation of organic dyes using heterogeneous catalysts -- 3.1 Introduction -- 3.1.1 Types of dyes -- 3.1.2 Type of photocatalysts used -- 3.2 TiO2 catalyst -- 3.2.1 Principle of TiO2 photocatalysis and mechanistic pathways -- 3.2.2 Parameters affecting the photocatalytic degradation. , 3.2.3 Modification of TiO2 -- 3.3 ZnO as catalyst -- 3.3.1 Principle of ZnO photocatalysis and mechanistic pathways -- 3.3.2 Parameters affecting the photocatalytic degradation -- 3.3.3 Modification of ZnO -- 3.4 Other photocatalyst -- 3.5 Degradation study of dyes -- 3.6 Conclusion and outlook -- References -- Chapter 4 Effective materials in the photocatalytic treatment of dyestuffs and stained wastewater -- 4.1 Introduction -- 4.2 Various techniques used for removal of dye from wastewater -- 4.2.1 Adsorption technique -- 4.2.2 Ion exchange -- 4.2.3 Membrane filtration technique -- 4.2.4 Electrochemical method -- 4.2.5 Bioremediation and biodegradation -- 4.2.6 Advanced oxidation process -- 4.3 Photocatalysis -- 4.3.1 Mechanism of photocatalysis -- 4.3.2 Influences of several parameters on photocatalysis -- 4.4 Various dyes that can be treated by photolysis -- 4.4.1 Methylene blue -- 4.4.2 Methyl orange -- 4.4.3 Rhodamine B -- 4.4.4 Malachite green -- 4.4.5 Indigo carmine -- 4.5 Future Scope -- References -- Chapter 5 Sonophotocatalytic degradation of refractory textile dyes -- 5.1 Introduction -- 5.2 Sonochemical process -- 5.3 Photocatalytic process -- 5.4 Sonophotocatalytic reactors -- 5.5 Dyes degradation by sonophotocatalysis -- 5.6 Does sonoluminescence activate photocatalyst? -- 5.7 Source of synergism in sonophotocatalysis -- 5.8 Influencing factors -- 5.8.1 Ultrasonic power -- 5.8.2 Catalyst dosage -- 5.8.3 Dye concentration -- 5.8.4 Solution pH -- 5.8.5 Saturation gases -- 5.8.6 Effect of additives -- 5.9 Conclusions and future perspectives -- References -- Chapter 6 High photocatalytic activity under visible light for dye degradation -- 6.1 Introduction -- 6.2 Fundamentals of photocatalytic dye-degradation reactions -- 6.2.1 Photocatalytic dye degradation reactions mechanism -- 6.2.2 Photocatalytic dye-degradation measurement techniques. , 6.3 Different factors affecting photocatalytic dye degradation -- 6.4 Syntheses of UV-Visible/visible light active photocatalysts -- 6.4.1 Synthesis of TiO2@C nanocomposites -- 6.4.2 Synthesis of MoS2 nanoplatelets, nanorods, and nanosheets -- 6.4.3 Synthesis of flower-like ZnO@MoS2 heterostructures (ZMH) -- 6.5 Structural, optical, and methylene blue dye degradation properties -- 6.5.1 TiO2@C nanocomposites -- 6.5.2 Different MoS2 nanostructures -- 6.5.3 Flower-like ZnO@MoS2 nanostructures -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Green and sustainable methods of syntheses of photocatalytic materials for efficient application in dye degradation -- 7.1 Introduction -- 7.2 Environmental concern of organic toxic pollutants -- 7.3 Semiconductor nanomaterials as photocatalyst -- 7.3.1 Strategies for improvement of photocatalytic Performance of Semiconductor nanomaterials -- 7.4 Limitations of traditional synthesis methods -- 7.5 Green approach for synthesis of ZnO-based composites materials -- 7.6 Laboratory syntheses of ZnO nanoparticles -- 7.6.1 Phase determination by XRD and morphology analyses -- 7.6.2 Raman data analysis -- 7.6.3 XPS and FTIR data analyses -- 7.6.4 Optical properties of the nanocomposite materials -- 7.7 Photocatalytic mechanism -- 7.7.1 Sun Light-driven photocatalytic dye degradation activity -- 7.8 Several applications of ZnO and ZnO-rGO nanocomposites -- 7.8.1 Self-cleaning property of cotton fabric under sunlight -- 7.8.2 Self-cleaning property of cotton fabric with different cleaning agents under sunlight -- 7.9 Summary -- 7.10 Conclusions and future scope -- Acknowledgement -- References -- Chapter 8 Hybrid systems to improve photo-based processes and their importance in the dye degradation -- 8.1 Introduction -- 8.2 Hybrid systems -- 8.2.1 Common operational aspects effect. , 8.2.2 Photocatalysis-oxidant addition -- 8.2.3 Fenton-photocatalysis -- 8.2.4 Photocatalysis-electro -- 8.2.5 Photocatalysis-electro-Fenton -- 8.2.6 Sono-photocatalysis -- 8.2.7 Adsorption-photocatalysis -- 8.2.8 Membrane-photocatalysis -- 8.2.9 Photocatalysis-biodegradation -- 8.3 General considerations -- 8.3.1 Hybrid process selection -- 8.3.2 Scale-up considerations -- 8.4 Conclusions -- References -- Chapter 9 Photocatalytic metal nanoparticles: a green approach for degradation of dyes -- 9.1 Introduction -- 9.2 Green synthesis of Zinc oxide (ZnO) NPs -- 9.3 Green synthesis of titanium dioxide (TiO2) NPs -- 9.4 Green synthesis of Copper oxide (CuO/Cu2O) NPs -- 9.5 Photocatalytic degradation of toxic dyes -- 9.6 Application of photocatalysts -- 9.7 Mechanism of dye degradation -- 9.7.1 pH -- 9.7.2 Light intensity and irradiation time -- 9.7.3 Photocatalysts load -- 9.7.4 Initial dye concentration -- 9.7.5 Temperature -- 9.8 The bottlenecks of photocatalytic dye degradation using NPs -- 9.9 Reusability of NPs -- 9.10 Aggregation of NPs -- 9.11 Toxicity of NPs -- 9.12 Hybrid systems for dye removal -- 9.13 Conclusions -- References -- Chapter 10 A facile biogenic-mediated synthesis of Ag nanoparticles over anchored ZnO for enhanced photocatalytic degradation of organic dyes -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Materials -- 10.2.2 Preparation of bark extract -- 10.2.3 Green synthesis of Ag@ZnO -- 10.2.4 Characterization -- 10.2.5 Photocatalytic activity -- 10.2.6 Reuse and recyclability test -- 10.3 Results and discussion -- 10.3.1 Characterization of the catalyst -- 10.3.2 Photocatalytic degradation study -- 10.3.3 Stability and reuse study -- 10.3.4 Plausible photocatalytic reaction mechanism of MB and CR dye degradation -- 10.4 Conclusion -- Acknowledgments -- References. , Chapter 11 Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes -- 11.1 Introduction -- 11.2 Problems associated with dyes -- 11.3 Green synthesis and characterization of nanoparticles -- 11.3.1 Characterization techniques -- 11.3.2 UV-visible spectroscopy -- 11.3.3 X-ray diffraction (XRD) -- 11.3.4 Fourier transform infrared (FTIR) spectroscopy -- 11.3.5 Atomic force microscopy (AFM) -- 11.3.6 Scanning electron microscopy (SEM) -- 11.3.7 Transmission electron microscopy (TEM) -- 11.4 Metallic nanoparticles -- 11.5 Fungal-mediated nanoparticles synthesis -- 11.6 Plant-mediated nanoparticles synthesis -- 11.7 Mechanism of dye degradation by metal nanoparticles -- 11.7.1 Direct photocatalytic degradation -- 11.7.2 Indirect or sensitization-mediated degradation -- 11.8 Factors influencing degradation of dyes -- 11.8.1 pH -- 11.8.2 Concentration of nanoparticles -- 11.8.3 Temperature -- 11.8.4 Irradiation time and light intensity -- 11.8.5 Concentration of dyes -- 11.9 Applications of nanoparticles in dye degradation -- 11.9.1 Fungal-mediated nanoparticles in dye degradation -- 11.9.2 Plant-mediated nanoparticles in dye degradation -- 11.10 Challenges -- 11.11 Conclusion -- References -- Chapter 12 Heterogeneous photocatalysis of organic dyes -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Types/categories of dyes -- 12.2.2 Advancement in degradation of organic dye under heterogeneous photocatalysis -- 12.3 The semiconductor surface for dye adsorption in dark -- 12.4 Dark adsorption of dyes and its efficiency -- 12.5 Photocatalyst details -- 12.5.1 Titanium dioxide -- 12.5.2 Other semiconductors -- 12.6 Photoreactor configurations -- 12.7 Photodecolorization of dye organics -- 12.7.1 Process variables and mechanism for absorption of light by semiconductor. , 12.7.2 Advanced oxidation processes incorporation with sonolysis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...