GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere  (4)
  • 1
    Publikationsdatum: 2023-07-06
    Beschreibung: The Tibetan Plateau, also known as the “Water Tower of Asia” because of its function as a water storage and supply region, responds dramatically to modern climate changes. Paleoecological shifts inferred from lake sediment archives provide essential insights into past climate changes, and the processes that drove those shifts. This is especially true for studies of lakes in endorheic basins on the Tibetan Plateau, where lake level is regulated predominantly by Monsoon intensity. Such water bodies provide excellent opportunities to reconstruct past changes in humidity. Most paleolimnological investigations of lakes on the Tibetan Plateau, however, have involved the study of a single sediment core, making it difficult to discern between changes caused by local events and those caused by lake-wide or regional processes. Here we present results from a paleolimnological study of Lake Taro Co, a currently closed-basin lake in Central Tibet. We compared a sediment record from the central part of the lake to a record from the near-shore area, and present results of sedimentological and bioindicator (chironomid, diatom, pollen) analyses from both records. Results show three periods of lake-wide ecosystem change (〉 ca. 5250, 5250–2250 and 〈 since about 2250 cal year BP), which reflect a continuous drying trend throughout the Middle and Late Holocene. In addition to this lake-wide trend, we identified two local events in the sediment core from the southeastern, nearshore site. These include (1) a hiatus between 12,400 and 5400 cal year BP and (2) an 1800-year period of distinct paleoenvironmental conditions (5400–3600 cal year BP). We hypothesize that both events were caused by relocation of a river in the southeast sector of the lake’s catchment. We propose that the first relocation caused an erosion event that removed sediment, thereby producing the hiatus. During the following 1800 years, the core site may have been located on the river delta, before another river relocation at 3600 cal year BP established the modern prodelta situation. Our study demonstrates the value of using multiple sediment cores from a lake, to better identify processes that control widespread versus local events.
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Beschreibung: Fellowships for Young International Scientists http://dx.doi.org/10.13039/501100010895
    Beschreibung: NSFC Research Fund for International Young Scientists (CN)
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) (DE)
    Beschreibung: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Beschreibung: Technische Universität Braunschweig (1042)
    Schlagwort(e): ddc:551 ; Monsoon ; Chironomidae ; Diatoms ; Geochemistry ; XRF ; Paleolimnology
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-05
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉ABSTRACT〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The recent rise in air temperatures detected at high altitudes of the Tibetan Plateau has accelerated glacier melt and retreat. Moreover, enhanced monsoonal precipitation has increased runoff and transport of allochthonous material to the lakes. Consequently, water levels are rising, modifying the spatial distribution and composition of local aquatic biota. To infer these environmental and biological changes in recent decades, a 30‐cm‐long sediment core, representing the past ~160 years, from Nam Co, an endorheic lake, was analyzed for subfossil chironomid assemblages and sediment geochemistry. In total, 25 chironomid morphotypes were identified. Nineteen were considered as non‐rare taxa (abundances ≥2%) and six as rare taxa (abundances 〈2%). Since 1956 〈sc〉ce〈/sc〉, higher chironomid richness (〈italic〉S〈/italic〉 = 19) is evident compared to the previous 100 years. The simultaneous decrease in the abundance of profundal 〈italic〉Micropsectra radialis〈/italic〉‐type and increase of both 〈italic〉Chironomus〈/italic〉 and 〈italic〉Procladius〈/italic〉, taxa adapted to more eurytopic and slightly warmer water bodies, indicate increasing water temperatures and intensified primary productivity. The dominance of littoral chironomid assemblages reflects increasing lake water levels, flooded shorelines and expansion of littoral areas driven by increased precipitation and glacial meltwater input both resulting from the increase in air temperatures. This scenario is confirmed by increases in total nitrogen and Zr/Rb ratios, indicating higher productivity and coarser grain size as a consequence of increased runoff via the Niya Qu. These hydrological changes have resulted in a positive water balance that can be linked to an increase in moisture supply from the Indian summer monsoon and glacier melt, reflecting increasing temperatures and precipitation since 1956 〈sc〉ce〈/sc〉, ultimately driven by anthropogenic warming.〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): ddc:577.6 ; chironomid ; Indian summer monsoon ; Nam Co ; Niya Qu ; nutrients ; runoff ; water level
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-07-21
    Beschreibung: The archaeological sites in the open‐cast mine of Schöningen, Germany, represent outstanding archives for understanding Middle Pleistocene interglacial–glacial transitions and human adaption. Aquatic microfossil and pollen assemblages from the ‘Reinsdorf sequence’, likely correlated to Marine Isotope Stage 9, document environmental changes from a thermal maximum to succeeding glacial conditions recorded in two sequences of excavation sites 12 II and 13 II. Multi‐proxy analyses enable detailed reconstruction of lake‐shore and landscape developments despite variable microfossil preservation in changing carbonate‐ and organic‐rich deposits. Rich aquatic vegetation with abundant charophytes suggests repeated phases with water depths of 0.5–2 m at site 13 II, while even greater temporary depths are deduced for 12 II DB. Mesorheophilic and mesotitanophilic ostracod species indicate stream inflows with medium–low calcium contents of 〉18 mg Ca L–1 originating from nearby springs. Diatoms point to meso‐eutrophic conditions and an alkaline pH of the lake water. Interglacial conditions with thermophile forests but no aquatic microfossils preserved, suggesting a dry or only temporarily flooded site, mark the beginning of the sequence. Continuous presence of aquatic organisms and overall dominance of small tychoplanktonic diatoms during a subsequent cool steppe phase provide evidence for increased water depths and unstable habitats characterized by erosion and probably prolonged periods of lake ice cover. During the succeeding boreal forest‐steppe phase, surface runoff into the productive, shallow lake decreased due to a more extensive vegetation cover. Concurrently, intensified groundwater input in contact with the nearby salt wall caused elevated salinities. Following a lake level drop, stream inflows and lake levels increased again towards the end of the Reinsdorf sequence and promoted development of a diverse fauna and flora at the lake shore; thereby maintaining an attractive living and hunting environment for early humans during a phase of generally cooler temperatures and landscape instability at the transition into a glacial period.
    Beschreibung: Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): 551.79 ; Schöningen ; Middle Pleistocene ; Reinsdorf sequence ; aquatic microfossils ; pollen ; lake-shore development
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-03-30
    Beschreibung: The prevailing view suggests that the Eemian interglacial on the European Plain was characterized by largely negligible geomorphic activity beyond the coastal areas. However, systematic geomorphological studies are sparse. Here we present a detailed reconstruction of Eemian to Early Weichselian landscape evolution in the vicinity of a small fingerlake on the northern margin of the Salzwedel Palaeolake in Lower Saxony (Germany). We apply a combination of seismics, sediment coring, pollen analysis and luminescence dating on a complex sequence of colluvial, paludal and lacustrine sediments. Results suggest two pronounced phases of geomorphic activity, directly before the onset and at the end of the Eemian period, with an intermediate period of pronounced landscape stability. The dynamic phases were largely driven by incomplete vegetation cover, but likely accentuated by fluvial incision in the neighbouring Elbe Valley. Furthermore, we discovered Neanderthal occupation at the lakeshore during Eemian pollen zone (PZ) E IV, which is chronologically in line with other known Eemian sites of central Europe. Our highly‐resolved spatio‐temporal data substantially contribute to the understanding of climate‐induced geomorphic processes throughout and directly after the last interglacial period. It helps unraveling the landscape dynamics between the coastal areas to the north and the loess belt to the south.
    Beschreibung: Two phases of channel incision at the Saalian‐Eemian transition and in the late Eemian. Incisions closely followed by rising water tables. Long‐lasting phase of geomorphic stability in the mid‐Eemian, characterized by: very dense forest cover. the formation of a fingerlake within the paleochannel with gradually sinking water table. no influx of clastic sediments, but deposition of peat and lake‐marl deposits.
    Beschreibung: Max‐Planck‐Gesellschaft http://dx.doi.org/10.13039/501100004189
    Schlagwort(e): ddc:554.3 ; ddc:551
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...