GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-27
    Description: Aeolian dust transport from the Saharan/Sahel desert regions is considered the dominant external input of iron (Fe) to the surface waters of the eastern (sub-) tropical North Atlantic Ocean. To test this hypothesis, we investigated the sources of dissolved Fe (DFe) and quantified DFe fluxes to the surface ocean in this region. In winter 2008, surface water DFe concentrations varied between 〈0.1 nM and 0.37 nM, with an average of 0.13 ̃ 0.07 nM DFe (n = 194). A strong correlation between mixed layer averaged concentrations of dissolved aluminum (DAl), a proxy for dust input, and DFe indicated dust as a source of DFe to the surface ocean. The importance of Aeolian nutrient input was further confirmed by an increase of 0.1 nM DFe and 0.05 μM phosphate during a repeat transect before and after a dust event. An exponential decrease of DFe with increasing distance from the African continent, suggested that continental shelf waters were a source of DFe to the northern part of our study area. Relatively high Fe:C ratios of up to 3 ° 10°5 (C derived from apparent oxygen utilization (AOU)) indicated an external source of Fe to these African continental shelf waters. Below the wind mixed layer along 12°N, enhanced DFe concentrations (〉1.5 nM) correlated positively with apparent oxygen utilization (AOU) and showed the importance of organic matter remineralization as an DFe source. As a consequence, vertical diffusive mixing formed an important Fe flux to the surface ocean in this region, even surpassing that of a major dust event. © 2012. American Geophysical Union.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-04
    Description: Over much of the world's surface oceans, nitrate and phosphate concentrations are below the limit of detection (LOD) of conventional techniques of analysis. However, these nutrients play a controlling role in primary productivity and carbon sequestration in these waters. In recent years, techniques have been developed to address this challenge, and methods are now available for the shipboard analysis of nanomolar (nM) nitrate and phosphate concentrations with a high sample throughput. This article provides an overview of the methods for nM nitrate and phosphate analysis in seawater. We outline in detail a system comprising liquid waveguide capillary cells connected to a conventional segmented-flow autoanalyser and using miniaturised spectrophotometers. This approach is suitable for routine field measurements of nitrate and phosphate and achieves LODs of 0.8 nM phosphate and 1.5 nM nitrate. © 2008 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-27
    Description: This paper reports on investigations into interferences with the measurements of nanomolar nitrate. +. nitrite and soluble reactive phosphate (SRP) in oceanic surface seawater using a segmented continuous flow autoanalyser (SCFA) interfaced with a liquid-waveguide capillary flow-cell (LWCC). The interferences of silicate and arsenate with the analysis of SRP, the effect of sample filtration on the measurement of nanomolar nitrate. +. nitrite and SRP concentrations, and the stability of samples during storage are described.The investigation into the effect of arsenate (concentrations up to 100nM) on phosphate analysis (concentrations up to 50nM) indicated that the arsenate interference scaled linearly with phosphate concentrations, resulting in an overestimation of SRP concentrations of 4.6±1.4 for an assumed arsenate concentration of 20nM. The effect of added Si(OH)4 was to increase SRP signals by up to 36±19nM (at 100μM Si(OH)4). However, at silicate concentrations below 1.5μM, which are typically observed in oligotrophic surface ocean waters, the effect of silicate on the phosphate analysis was much smaller (≤0.78±0.15nM change in SRP). Since arsenate and silicate interferences vary between analytical approaches used for nanomolar SRP analysis, it is important that the interferences are systematically assessed in any newly developed analytical system.Filtration of surface seawater samples resulted in a decrease in concentration of 1.7-2.7. nM (±0.5. nM) SRP, and a small decrease in nitrate concentrations which was within the precision of the method (±0.6. nM). A stability study indicated that storage of very low concentration nutrient samples in the dark at 4°C for less than 24. h resulted in no statistically significant changes in nutrient concentrations. Freezing unfiltered surface seawater samples from an oligotrophic ocean region resulted in a small but significant increase in the SRP concentration from 12.0 ± 1.3 nM (n=3) to 14.7 ± 0.6. nM (n=3) (Student's t-test; p=0.021). The corresponding change in nitrate concentration was not significant (Student's t-test; p>0.05). © 2010 Elsevier B.V.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-08
    Description: Concentrations of dissolved iron (DFe) and Fe-binding ligands were determined in the tropical Northeast Atlantic Ocean (12-30°N, 21-29°W) as part of the UK-SOLAS (Surface Ocean Lower Atmosphere Study) cruise Poseidon 332 (P332) in January-February 2006. The surface water DFe concentrations varied between 0.1 and 0.4 nM with an average of 0.22 ± 0.05 nM (n = 159). The surface water concentrations of total Fe-binding ligands varied between 0.82 and 1.46 nM with an average of 1.11 ± 0.14 nM (n = 33). The concentration of uncomplexed Fe-binding ligands varied between 0.64 and 1.35 nM with an average of 0.90 ± 0.14 nM (n = 33). Thus, on average 81 of the total Fe-binding ligand concentration was uncomplexed. The average logarithmic conditional stability constant of the pool of Fe-binding ligands was 22.85 ± 0.38 with respect to Fe 3+ (n = 33). A transect (12°N, 26°W to 16°N, 25.3°W) was sailed during a small Saharan dust event and repeated a week later. Following the dust event, the concentration of DFe increased from 0.20 ± 0.026 nM (n = 125) to 0.25 ± 0.028 (n = 17) and the concentration of free Fe-binding ligands decreased from 1.15 ± 0.15 (n = 4) to 0.89 ± 0.10 (n = 4) nM. Furthermore, the logarithmic stability constants of the Fe-binding ligands south of the Cape Verde islands were distinctively lower than north of the islands. The absence of a change in the logarithmic stability constant after the dust event south of the Cape Verde islands suggests that there was no significant atmospheric input of new Fe-binding ligands during this dust event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-04
    Description: With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods used to model their most common type of experimental dataset, the complexometric titration. All were asked to apply statistical techniques that they were familiar with to model synthetic titration data that are typical of those obtained by applying state-of-the-art electrochemical methods - anodic stripping voltammetry (ASV) and competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE-ACSV) - to the analysis of natural waters. Herein, we compare their estimates for parameters describing the natural ligands, examine the accuracy of inferred ambient free metal ion concentrations ([Mf]), and evaluate the influence of the various methods and assumptions used on these results.The ASV-type titrations were designed to test each participant's ability to correctly describe the natural ligands present in a sample when provided with data free of measurement error, i.e., random noise. For the three virtual samples containing just one natural ligand, all participants were able to correctly identify the number of ligand classes present and accurately estimate their parameters. For the four samples containing two or three ligand classes, a few participants detected too few or too many classes and consequently reported inaccurate 'measurements' of ambient [Mf]. Since the problematic results arose from human error rather than any specific method of analyzing the data, we recommend that analysts should make a practice of using one's parameter estimates to generate simulated (back-calculated) titration curves for comparison to the original data. The root-mean-squared relative error between the fitted observations and the simulated curves should be comparable to the expected precision of the analytical method and upon visual inspection the distribution of residuals should not be skewed.Modeling the synthetic, CLE-ACSV-type titration dataset, which comprises 5 titration curves generated at different analytical windows or levels of competing ligand added to the virtual sample, proved to be more challenging due to the random measurement error that was incorporated. Comparison of the submitted results was complicated by the participants' differing interpretations of their task. Most adopted the provided 'true' instrumental sensitivity in modeling the CLE-ACSV curves, but several estimated sensitivities using internal calibration, exactly as is required for actual samples. Since most fitted sensitivities were biased low, systematic error in inferred ambient [Mf] and in estimated weak ligand (L2) concentrations resulted.The main distinction between the mathematical approaches taken by participants lies in the functional form of the speciation model equations, with their implicit definition of independent and dependent or manipulated variables. In 'direct modeling', the dependent variable is the measured [Mf] (or I p) and the total metal concentration ([M]T) is considered independent. In other, much more widely used methods of analyzing titration data - classical linearization, best known as van den Berg/Ružić, and isotherm fitting by nonlinear regression, best known as the Langmuir or Gerringa methods - [Mf] is defined as independent and the dependent variable calculated from both [M]T and [Mf]. Close inspection of the biases and variability in the estimates of ligand parameters and in predictions of ambient [Mf] revealed that the best results were obtained by the direct approach. Linear regression of transformed data yielded the largest bias and greatest variability, while non-linear isotherm fitting generated results with mean bias comparable to direct modeling, but also with greater variability.Participants that performed a unified analysis of ACSV titration curves at multiple detection windows for a sample improved their results regardless of the basic mathematical approach taken. Overall, the three most accurate sets of results were obtained using direct modeling of the unified multiwindow dataset, while the single most accurate set of results also included simultaneous calibration. We therefore recommend that where sample volume and time permit, titration experiments for all natural water samples be designed to include two or more detection windows, especially for coastal and estuarine waters. It is vital that more practical experimental designs for multi-window titrations be developed.Finally, while all mathematical approaches proved to be adequate for some datasets, matrix-based equilibrium models proved to be most naturally suited for the most challenging cases encountered in this work, i.e., experiments where the added ligand in ACSV became titrated. The ProMCC program (Omanović et al., this issue) as well as the Excel Add-in based KINETEQL Multiwindow Solver spreadsheet (Hudson, 2014) have this capability and have been made available for public use as a result of this intercomparison exercise.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-22
    Description: Oceanic fixed-nitrogen concentrations are controlled by the balance between nitrogen fixation and denitrification. A number of factors, including iron limitation, can restrict nitrogen fixation, introducing the potential for decoupling of nitrogen inputs and losses. Such decoupling could significantly affect the oceanic fixed-nitrogen inventory and consequently the biological component of ocean carbon storage and hence air–sea partitioning of carbon dioxide. However, the extent to which nutrients limit nitrogen fixation in the global ocean is uncertain. Here, we examined rates of nitrogen fixation and nutrient concentrations in the surface waters of the Atlantic Ocean along a north–south 10,000 km transect during October and November 2005. We show that rates of nitrogen fixation were markedly higher in the North Atlantic compared with the South Atlantic Ocean. Across the two basins, nitrogen fixation was positively correlated with dissolved iron and negatively correlated with dissolved phosphorus concentrations. We conclude that inter-basin differences in nitrogen fixation are controlled by iron supply rather than phosphorus availability. Analysis of the nutrient content of deep waters suggests that the fixed nitrogen enters North Atlantic Deep Water. Our study thus supports the suggestion that iron significantly influences nitrogen fixation5, and that subsequent interactions with ocean circulation patterns contribute to the decoupling of nitrogen fixation and loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: During the Polarstern (PS94) expedition, summer 2015, part of the international GEOTRACES program, sources and sinks of dissolved (D) Cd, Co, Cu, Fe, Mn, Ni and Zn were studied in the central Arctic Ocean. In the Polar Surface Water in which the TransPolar Drift (TPD) is situated, salinity and δ18O derived fractions indicated a distinct riverine source for silicate DCo, DCu, DFe, DMn and DNi. Linear relationships between DMn and the meteoric fraction depended on source distance, likely due to Mn-precipitation during transport. In the upper 50 m of the Makarov Basin, outside the TPD core, DCo, DMn, DNi, DCd and DCu were enriched by Pacific waters, whereas DFe seemed diluted. DCo, DFe, DMn and DZn were relatively high in the Barents Sea and led to enrichment of Atlantic water flowing into the Nansen Basin. Deep concentrations of all metals were significantly lower in the Makarov Basin compared to the Nansen and Amundsen, the Eurasian, Basins. The Gakkel ridge hydrothermal input and higher continental slope convection are explanations for higher metal concentrations in the Eurasian Basins. Although scavenging rates are lower in the Makarov Basin compared to the Eurasian Basins, the residence time is longer and therefore scavenging can decrease the dissolved concentrations with time. This study provides a baseline to assess future change, and additionally identifies processes driving trace metal distributions. Our results underline the importance of fluvial input as well as shelf sources and internal cycling, notably scavenging, for the distribution of bio-active metals in the Arctic Ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-04
    Description: Dissolved neodymium (Nd) isotopes (expressed as εNd) have been widely used as a water mass tracer to reconstruct paleo ocean circulation. However, the marine geochemical cycle of Nd is not well understood. Unclear input mechanisms, scarcity of available data, and observed decoupling between dissolved εNd and Nd concentration patterns ([Nd]) are only a few of the unresolved issues. The latter is often referred to as the Nd paradox (e.g. [1]). Here we revisit this paradox with an unprecedented data set on particulate Nd isotope and concentration data from five stations along the Dutch GEOTRACES transect GA02 in the western North and equatorial Atlantic Ocean (cruises 64PE319 and 64PE321 from April to July 2010).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-04
    Description: We will present the combined results of the French GEOTRACES GEOVIDE cruise in the North Atlantic Ocean and the 2015 German GEOTRACES cruise TransArc II in the central Arctic Ocean. Research vessel "Pourquoi pas?" sailed on May 15th from Lisbon to Greenland to arrive in Newfoundland on June 30th 2014, and icebreaker "Polarstern" sailed on August 17th from Tromsoe to explore the Nansen, the Amundsen and the Makarov basins, to arrive in Bremerhaven on October 15th 2015. Total mercury was sampled using ultra-trace clean rosettes and determined on board. In the Atlantic Ocean, surface waters of the Gulf Stream are cooled down as they travel north, and mix at the same time with waters exiting the Arctic Ocean via Fram Strait. These cool and dense surface waters dive to depth in the Greenland and Labrador seas. The North Atlantic Ocean predominantly receives Hg via atmospheric deposition from Europe and North America where industrial Hg emissions peaked in the 1970s. The Hg inputs to the Arctic Ocean are less well-constrained if not unknown. The current debate opposes a primary atmospheric with a river-dominated scenario. We find consistent surface depleted profiles in the North Atlantic Ocean, while we exclusively observe surface enrichments in the Arctic Ocean, at all sampling stations. We will make use of the combined data sets of both cruises to investigate how climate may impact Hg marine biogeochemical cycle, how anthropogenic Hg makes its way into the deep ocean and whether the temporal evolution of emissions is traceable in water masses of different ages. We will also put our new observations in context with recent numerical model evaluations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-04
    Description: In the summer of 2015 a coordinated pan-arctic GEOTRACES study was executed by the Canadian CCGS Amundsen, the US CGC Healy and the German RV Polarstern. For intercalibration purposes, three cross-over stations were visited, one of them at the North Pole. The Polarstern expedition visited the Nansen, Amundsen and Mendeleev basins. On sections across these basins and the Gakkel and Lomonosov Ridge we collected samples for the full set of GEOTRACES key parameters and many additional analyses. The team of natural radionuclides took samples for U-series nuclides. During earlier work in the central Arctic with Polarstern we have quantified export production with 234Th, studied the interaction between scavenging and deep water ventilation using 230Th and 231Pa, and investigated the shelf-basin exchange with radium isotopes. I will give an overview of these results obtained on earlier expeditions, mention first results of the 2015 expedition, and discuss how these tracers can help us to observe changes in deep water circulation and particle flux that may be related to Arctic Oscillation or caused by sea ice retreat.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...