GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-07-09
    Description: Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) andwhich to date have not been investigated geochemically. The geochronological results are set in contextwith solution and laser ablation-basedelement/Ca ratios (Li, B,Mg,Mn, Sr,Ba, U,Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water Δ14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial δ234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral δ234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uraniummobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water Δ14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Boron isotopes in marine carbonates are increasingly used to reconstruct seawater pH and atmospheric pCO2 through Earth’s history. While isotope ratio measurements from individual laboratories are often of high quality, it is important that records generated in different laboratories can equally be compared. Within this Boron Isotope Intercomparison Project (BIIP), we characterised the boron isotopic composition (commonly expressed in δ11B) of two marine carbonates: Geological Survey of Japan carbonate reference materials JCp‐1 (coral Porites) and JCt‐1 (giant clam Tridacna gigas). Our study has three foci: (i) to assess the extent to which oxidative pre‐treatment, aimed at removing organic material from carbonate, can influence the resulting δ11B; (ii) to determine to what degree the chosen analytical approach may affect the resultant δ11B, and (iii) to provide well‐constrained consensus δ11B values for JCp‐1 and JCt‐1. The resultant robust mean and associated robust standard deviation (s*) for un‐oxidised JCp‐1 is 24.36 ± 0.45‰ (2s*), compared with 24.25 ± 0.22‰ (2s*) for the same oxidised material. For un‐oxidised JCt‐1, respective compositions are 16.39 ± 0.60‰ (2s*; un‐oxidised) and 16.24 ± 0.38‰ (2s*; oxidised). The consistency between laboratories is generally better if carbonate powders were oxidatively cleaned prior to purification and measurement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Key Points: - High resolution carbonate chemistry, δ13C-DIC, and particle flux measurements in the NE Pacific sheds light on the upper oceancalcium carbonate and alkalinity cycles. - Based on this sampling campaign, there isevidence for substantial CaCO3 dissolution in the mesopelagic zone above the saturation horizon. - Dissolution experiments, observations, and modeling suggest that shallow CaCO3 dissolutionis coupled to the consumption of organic carbon, through a combination of zooplankton grazing and oxic respiration within particle microenvironments. The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situcoccolith and foraminiferal calcite dissolution rates.We combine these rates with solid phase fluxes,dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean.The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution ratesof all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods)aretoo slow to explainthe patternsofboth CaCO3sinking fluxand alkalinity regenerationin the NorthPacific.Usinga combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolutionwith acombination of ambient saturation state and oxygen consumption simultaneously explainssolid-phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. Wedo not need to invokethe presence ofcarbonate phases with higher solubilities.Instead, biomineralization and metabolic processesintimately associatethe acid (CO2) and the base (CaCO3) in the same particles,driving the coupled shallow remineralization of organic carbonand CaCO3.The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration withindegrading particle aggregates.The coupling of these cyclesacts as a major filter on the export of both organic and inorganic carbon to the deep ocean.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-19
    Description: Planktic foraminifera census data have been used to reconstruct past temperatures through transfer functions, as well as changes in ocean ecosystems, chemistry and circulation. Here we present new multinet, plankton net and core-top census data from 20 sites in the Subpolar North Pacific. We combine these with previous data to provide an up to date compilation of North Pacific planktic foraminifera assemblage data. Our compilation is used to define 6 faunal zones: the subpolar zone; transitional zone; upwelling zone; subtropical zone; east equatorial zone; west equatorial zone; based on the distribution of 10 major species of planktic foraminifera. Two species of planktic foraminifera Neogloboquadrina pachyderma and Globigerina bulloides provide the basis for many subpolar paleo-reconstructions. Through the analysis of new multinet and CTD data we find that G. bulloides and N. pachyderma are predominantly found within 0–50 m of the water column and coincide with high food availability. N. pachyderma also shows a strong temperature control and can thrive in food poor waters where temperatures are low. Both species bloom seasonally, particularly during the spring bloom of March to June, with G. bulloides exhibiting greater seasonal variation. We suggest that percentage abundance of N. pachyderma in paleo-assemblages can be used to assess relative changes in past temperature, with G. bulloides abundance more likely to reflect changes in food availability. By comparing our core-top and multinet data, we also find a dissolution bias of G. bulloides over N. pachyderma in the North Pacific, which may enrich assemblages in the latter species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-10
    Description: Abstract Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water �14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial δ234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral δ234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water �14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...